2.2 Загальні методичні рекомендації вивчення елементів стереометрії у курсі геометрії 9 класу
2.2.1 Формування уявлень і понять про стереометричні фігури та деякі їх властивості
Формування понять - складний психологічний процес, який починається з утворення найпростіших форм пізнання - відчуття. Він проходить часто за такою схемою: відчуття сприймання уявлення поняття.
Дитина народжується, розвивається у тривимірному просторі.
Ознайомлення з просторовими об'єктами починається в ранньому віці на рівні відчуттів і сприйняття цих об'єктів органами чуття. Чим багатший і різноманітніший навколишній світ дитини, тим більше знань про просторові об'єкти вона одержує до початку навчання у школі.
Наприкінці 9-го класу під час вивчення розділу «Початкові відомості зі стереометрії» варто ознайомити учнів із взаємним розміщенням прямих і площин у просторі, зосередити увагу на властивостях просторових фігур, паралельності та перпендикулярності, систематизувати, узагальнити та дещо доповнити стереометричний матеріал, відомий з курсу математики 5-6-х класів та планіметрії 7-9-х класів. Основна мета вивчення розділу - розвиток просторових уявлень та уяви учнів, що має велике значення не тільки для загального їх розвитку, а є своєрідним завершенням шкільної геометричної освіти учнів, підготовкою до вивчення систематичного курсу стереометрії та продовження освіти в інших середніх навчальних закладах.
Особливістю вивчення елементів стереометрії у 9-му класі (порівняно з питаннями планіметрії) є те, що майже всі стереометричні факти повідомляються у цій темі без доведення. Їх обґрунтування та доведення - завдання систематичного курсу стереометрії. Засвоєння властивостей стереометричних фігур має здійснюватися з опорою на наочність: моделі, таблиці, рисунки тощо.
Вивчення розділу «Початкові відомості зі стереометрії» розпочинаємо з розгляду питання про взаємне розміщення точок, прямих і площин. Уявлення про площину, про взаємне розміщення точок і прямих на площині та деякі їх властивості учні одержали в курсі планіметрії. Їх слід повторити, навести приклади плоских поверхонь (поверхня підлоги, стелі, шибки, спокійного озера тощо).
Після цього вчитель пропонує зображення площини (здебільшого у вигляді паралелограма), її позначення (буквами грецького алфавіту тощо). Учні встановлюють, що єдину площину можна провести: 1) через дві прямі, які перетинаються; 2) через дві паралельні прямі; 3) через пряму та точку поза нею; 4) через три точки, що не лежать на одній прямій. До кожного випадку доцільно зробити відповідні рисунки.
Оскільки питання про взаємне розміщення прямих у просторі учням відоме з курсу планіметрії 7-го класу, то його варто повторити, сформулювати означення паралельних, мимобіжних прямих, ознаку паралельності прямих у просторів
Одночасно з цим потрібно з'ясувати випадки взаємного розміщення точки та площини, прямої та площини, навчитися виконувати умовні зображення площини та точки, яка лежить у цій площині або поза нею; площини та прямої, що лежить у площині, має з нею одну спільну точку (перетинає її), або такої, що не має спільних точок (паралельної їй). Можна дати означення паралельних прямої та площини: пряму та площину називають паралельними, якщо вони не мають спільних точок.
Слід показати учням, що коли пряма та площина паралельні, то використовуються такі записи:
або .
Далі формулюємо ознаку паралельності прямої і площини.
Наступним кроком є розгляд випадків взаємного розміщення двох площин. Логічно міркуючи, учні без особливих труднощів доходять висновку, що дві площини можуть не мати спільних точок (бути паралельними) або перетинатися по прямій. На моделях прямокутного паралелепіпеда, прямої призми учні інтуїтивно вказують їх паралельні грані і такі, що перетинаються. Учитель додає, що площини, у яких лежать ці грані, відповідно паралельні або перетинаються. За аналогією з означенням паралельних прямих на площині варто дати означення паралельних площин: дві площини називають паралельними, якщо вони не мають спільних точок.
За допомогою двох аркушів паперу пропонуємо учням сконструювати моделі:
а) паралельних площин;
б) площин, що перетинаються.
Рисунки, що ілюструють паралельність або перетин площин, учитель виконує на дошці, а учні відтворюють у зошитах. Після цього вчитель формулює ознаку паралельності площин.
Перед розглядом перпендикулярності прямої та площини, треба повторити питання про перпендикулярність прямих на площині, у просторі, пригадати означення перпендикулярних прямих.
Уявлення про перпендикулярність прямої та площини дають стовп і поверхня землі, ніжка стільця та підлога, канат у спортзалі, прикріплений до стелі, тощо. За допомогою спиці та картонного паперу створюємо модель прямої, перпендикулярної до площини. Перпендикулярність перевіряємо за допомогою косинця. Прикладаючи косинець катетом до спиці з кількох сторін, показуємо, що в кожному випадку спиця з картонкою утворює прямий кут. Так підводимо учнів до означення перпендикулярних прямої та площини: пряму, яка перетинає площину, називають перпендикулярною до цієї площини, якщо вона перпендикулярна до будь-якої прямої, що лежить у цій площині і проходить через точку перетину.
Слід показати учням, що коли пряма перпендикулярна до площини , то це записують так:
Варто повідомити учням, що у курсі стереометрії доводиться ознака перпендикулярності прямої та площини: «якщо пряма перпендикулярна до двох прямих, що лежать у площині та перетинаються, то вона перпендикулярна до даної площини».
Основну увагу треба звернути на формування в учнів поняття відстані від точки до площини. Насамперед слід повторити, як знаходиться відстань від точки до прямої. Якщо пряма перпендикулярна до площини і точка лежить у цій площині, то відрізок називають перпендикуляром, опущеним з точки на площину . Довжину цього перпендикуляра називають відстанню від точки до площини .
Розгляд можливих випадків перетину двох площин приводить до уявлення про перпендикулярні площини. Нехай дві площини та перетинаються по прямій . Якщо деяка площина перпендикулярна до прямої і перетинає площини та по перпендикулярних прямих, то площини та називають перпендикулярними. Це записують так:
Далі слід дати означення перпендикулярних площин і сформулювати ознаку, яка доводиться в систематичному курсі стереометрії. Таке пояснення необхідно також супроводжувати показом моделей. Якщо косинець прикласти до двох площин, що перетинаються так, що його катети будуть перпендикулярні до лінії їх перетину, то ми матимемо уявлення про перпендикулярні площини. Перпендикулярність площин на практиці можна перевірити за допомогою виска (шнура з тягарцем). Так, наприклад, перевіряють вертикальність стін будівлі.
Важливо, щоб учні могли показувати приклади взаємного розміщення прямих і площин у просторі на моделях відомих їм геометричних тіл, на предметах навколишнього середовища.
За дослідженнями психологів, середній шкільний вік є найбільш сензитивним для засвоєння методу проектування. Враховуючи це в практиці навчання, необхідно вже в курсі планіметрії ознайомити учнів з виконанням зображень геометричних тіл. У зв'язку з цим як спосіб зображення просторових фігур доцільно розглянути паралельне проектування, а саме конструкцію паралельного проектування точки та фігури на площину, сформулювати властивості паралельної проекції.
Під час вивчення розділу «Елементи стереометрії» відомості про многогранники, які учні одержали раніше, необхідно узагальнити й систематизувати. А саме: на основі попереднього досвіду учнів потрібно дати загальне поняття многогранника, його граней, ребер, вершин. Доцільно сформулювати таке означення.
Многогранник - це геометричне тіло, поверхня якого складається із скінченної кількості плоских многокутників.
Многокутники, які обмежують многогранник, називають його гранями, їх сторони - ребрами, а вершини - вершинами многогранника.
При цьому вчителю слід продемонструвати різні моделі многогранників. Учні повинні вміти показувати їх грані, ребра, вершини.
Корисно нагадати учням, що з найпростішими з многогранників - призмами і пірамідами - вони зустрічалися раніше і вже ознайомлені з їх елементами та деякими властивостями.
Перший вид многогранників, який слід розглянути, - призми. Відомості, одержані про призму раніше, варто пригадати, повторити. Зокрема, призму учні мають розпізнавати як многогранник, у якого дві грані - довільні рівні многокутники з відповідно паралельними сторонами, а решта граней - паралелограми. Рівні многокутники називають основами призми, а паралелограми - бічними гранями.
Демонструючи моделі різних призм, учитель має звертати увагу учнів на те, що є призми, у яких бічні грані - прямокутники. У цьому випадку бічне ребро перпендикулярне до площини основи. Можна дати означення прямої призми: призму називають прямою, якщо її бічні ребра перпендикулярні до основ. В іншому випадку призма буде похилою. У 9-му класі досить обмежитися розглядом прямої призми.
Висотою прямої призми є довжина її бічного ребра. Відрізок, який сполучає дві вершини, що не належать одній грані, називають діагоналлю призми. Уявлення про діагональний переріз можна дістати, коли розрізати призму, виготовлену з пластичного матеріалу (пластиліну, воску, гуми), площиною, що проходить через бічні ребра призми.
Серед чотирикутних призм корисно виділити ті, основою яких є паралелограм. Такі призми називають паралелепіпедами. Отже, всі грані паралелепіпеда є паралелограмами. Якщо бічні ребра паралелепіпеда перпендикулярні до площини основи, то його називають прямим паралелепіпедом (в іншому випадку він буде похилим). У прямого паралелепіпеда дві грані (основи) - паралелограми, а решта граней - прямокутники. З класу прямих паралелепіпедів виділяють такі, основою яких є прямокутник. Це прямокутний паралелепіпед. Куб - це прямокутний паралелепіпед, у якого всі ребра рівні.
Важливо, щоб учні усвідомили, що і куб, і прямокутний паралелепіпед, і прямий паралелепіпед є різновидами призми. Доречним є поданий нижче ланцюг, який демонструє зв'язок між цими поняттями: призма - чотирикутна призма - паралелепіпед - прямий паралелепіпед - прямокутний паралелепіпед - куб.
Деякі відомості про елементи прямої призми (ребра, грані, основи) учням уже відомі. На основі планіметричних знань їх доцільно уточнити. Оскільки основи та бічні грані прямої призми є плоскими фігурами, то для них справедливі твердження планіметрії, зокрема: бічні ребра рівні між собою як протилежні сторони прямокутника. Після цього, використовуючи властивості паралельного проектування, вчимо учнів будувати зображення прямої призми. Це можна зробити в такій послідовності. Спочатку зображуємо одну з основ призми (це буде деякий плоский многокутник). Потім через вершини многокутника проводимо вертикальні паралельні прямі та відкладаємо на них рівні відрізки (вони будуть зображенням бічних ребер прямої призми). Послідовно сполучаючи кінці цих відрізків, одержуємо зображення другої основи призми.
Одночасно доцільно дати учням уявлення про зображення прямокутного паралелепіпеда, куба. За відповідної підготовки переважна більшість учнів правильно виконує ці зображення, досить легко за ними знаходить паралельні, взаємно перпендикулярні грані, ребра тощо.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10