Рефераты. Основы системного анализа

Математические модели случайных процессов широко используются как для описания полезных сигналов, так и сигналов помех. Наиболее известной моделью случайного процесса является гауссовский случайный процесс.

Случайный процесс (вероятностный, или стохастический), процесс изменения во времени состояния или характеристик некоторой системы под влиянием различных случайных факторов, для которого определена вероятность того или иного его течения.

 

33. Эксперимент и модель. Современное понятие эксперимента


Эксперимент (от лат. experimentum - проба, опыт), метод познания, при помощи которого в контролируемых и управляемых условиях исследуются явления природы и общества.

Научное исследование реального процесса можно проводить теоретически или экспериментально, которые проводятся независимо друг от друга. Такой путь познания истины носит односторонний характер. В современных условиях развития науки и техники стараются проводить комплексное исследование объекта. Этого можно добиться на основе новой, удовлетворяющей требованиям времени, методологии и технологии научных исследований.

Рассмотрим связь модели и эксперимента на примере вычислительного эксперимента.

Вычислительный эксперимент - это эксперимент над математической моделью объекта на ЭВМ, который состоит в том, что по одним параметрам модели вычисляются другие её параметры и на этой основе делаются выводы о свойствах явления, описываемого математической моделью.  В проведении вычислительного эксперимента участвует коллектив исследователей - специалисты с конкретной предметной области, математики теоретики, вычислители, прикладники, программисты. Это связано с тем, что моделирование реальных объектов на ЭВМ включает в себя большой объём работ по исследованию их физической и математической моделей, вычислительных алгоритмов, программированию и обработке результатов. Здесь можно заметить аналогию с работами по проведению натурных экспериментов: составление программы экспериментов, создание экспериментальной установки, выполнение контрольных экспериментов, проведение серийных опытов, обработки экспериментальных данных и их интерпретация и т.д. Таким образом, проведение крупных комплексных расчётов следует рассматривать как эксперимент, проводимый на ЭВМ или вычислительный эксперимент.

Задача проектирования, например, сети обслуживания должна решаться с позиций системного подхода, учитывающего ее многоаспектность и иерархичность. Естественно, что те же свойства приобретает и процесс проектирования, проходящий уже на фазе моделирования несколько этапов и требующий применения разнообразного математического аппарата. В процессе имитационного эксперимента над моделью с учетом случайных исходов необходимо:

·                    классифицировать факторы на существенные и несущественные;

·                    разделить и оценить количественно влияния факторов и их комбинаций на целевую функцию;

·                    найти наивыгоднейшую комбинацию факторов.

Структура эксперимента (количество прогонов, выбор исходных данных для них и характер обработки результатов) определяется его целью. Первая проблема решается средствами дисперсионного анализа, вторая – регрессионного и факторного (скрининг), третья - методами статистической оптимизации.


34. Измерение, измерительные шкалы


Одной из задач при выработке решений является измерение рассматриваемых критериев по выбранным шкалам.

Под формированием шкалы понимается присвоение объектам (вещам, предметам или событиям) чисел согласно некоторой системе правил.

Можно выделить четыре уровня измерения и соответственно четыре типа шкал:

- шкалы наименований;

- шкалы порядка;

- шкалы интервалов;

- шкалы отношений.

В шкале наименований число используется как название или классификация. Можно нумеровать альтернативы, объекты, действия и т.д. Это не будет означать ничего иного, кроме того, что каждый отдельный предмет должен иметь различное обозначение. На шкалах наименований допустимы некоторые статистические операции. Можно, например, определить число элементов, принадлежащих какому-либо классу, найти наиболее многочисленный класс.

Шкалы порядка формируются в том случае, когда есть возможность сравнения двух объектов по общему признаку. Шкалы могут быть простого и слабого порядков. В шкалах простого порядка каждый элемент должен иметь более высокий или более низкий ранг, чем всякий другой элемент. Элементы на шкале слабого порядка могут иметь равную оценку. Поскольку элементы на шкалах порядка могут быть расположены неравномерно, то не допускается использование каких-либо арифметических операций. Возможно использование тех же статистических операций, что и на шкалах наименований и, кроме того, можно вычислить медианы, центили, коэффициенты ранговой корреляции.

Шкалы интервалов иначе называют равномерными; числено равные разности выражают эмпирически равные разности в измеряемом общем признаке. Шкалы интервалов не обладают свойством аддитивности; и, следовательно, в общем случае, на них нельзя осуществлять арифметические операции. Однако, при введении произвольного нуля, разности на шкалах интервалов можно рассматривать как абсолютные величины и производить с ними арифметические действия. Примером измерения в шкалах интервалов может служить календарное время или высота над уровнем моря. Для шкал интервалов приемлемы те же статистические операции, что и для шкал более низкого уровня, а также возможно вычисление математического ожидания, стандартного отклонения, смешанных моментов и коэффициента асимметрии.

Шкала отношений обладает всеми свойствами других шкал и, кроме этого, свойством аддитивности, что делает возможным проведение любых статистических и арифметических операций. В шкалах отношений измеряются любые физические величины; нуль шкалы естественен.

В задачах многокритериального ПР возникает необходимость формирования отдельных шкал для измерения разных компонентов рассматриваемого свойства. Такая шкала называется многомерной. При этом критерии в многомерной шкале могут измеряться по шкалам как одного, так и разных уровней.


35.Модели обработки данных, типичные задачи, классификационных и числовых моделей


Одной из важных задач искусственного интеллекта является задача обобщения информации. Благодаря применению методов извлечения и обобщения информации в системах принятия решений возможно построение обобщенных моделей данных и обработка больших массивов экспериментальных данных, полученных в ходе различного рода процессов и явлений. Источники таких больших потоков данных имеются во многих областях: банковское дело, розничная торговля, управление и диагностика, маркетинг и т.д. Общим для всех этих данных является то, что они содержат большое количество скрытых закономерностей, являющихся весьма важными для принятия стратегических решений. Для выявления этих закономерностей и используются методы обобщения и компьютерные системы, реализующие эти методы.

Большинство специалистов по обработке экспериментальных данных сходятся в том, что разнообразные задачи анализа информации могут быть сведены к трем: классификации исходных данных, выбору информативных признаков, идентификации неизвестных наблюдений.

Схема информационных преобразований данных в классификационной задаче приведена на рис.1.

В общем случае эмпирические данные могут быть сведены в таблицу . Используя различные модели , лежащие в основе методов классификации, исследователь преобразует описание таблицы в вид адекватный этим моделям. В рамках геометрической модели таблицу можно представить в виде совокупности “векторов – строк” (объектов) в признаковом пространстве . Структура “векторов – строк” меняется в зависимости от моделей описания данных . В качестве описаний могут выступать матрицы близости, сходства, подобия.


Рис.1


Классический подход к оценке информативности параметров исходного описания данных в задаче классификации сводится к следующей процедуре:

- по всей совокупности параметров в рамках конкретного решающего правила оценивается ошибка классификации ;

- из исходной совокупности параметров

изымается параметр и повторно оценивается ошибка классификации ;

- путем сравнения этих ошибок и определения их разности :



выносится суждение о роли параметра в классификационной задаче. Так, если > 0, то параметр является “вредным” для классификации. Если < 0, то параметр – “полезен”, а, если =0, то “бесполезен”. Такой подход определяет необходимость последовательного перебора всех параметров, а также их возможных сочетаний, что влечет за собой значительные временные затраты.


36. Выбор как реализации цели. Определение термина «выбор»


Определение: принятие решения ("выбор") есть действие над множеством альтернатив, в результате которого исходное множество альтернатив сужается, т.е. происходит его редукция.

Выбор является действием, придающим всей деятельности целенаправленность. Именно через акты выбора реализуется подчиненность всей деятельности определенной цели или совокупности взаимосвязанных целей.

Принятие решений как снятие неопределенности (информационный подход).

Процесс получения информации можно рассматривать как уменьшение неопределенности в результате приема сигнала, а количество информации – как количественную меру степени снятия неопределенности.

Но в результате выбора некоторого подмножества альтернатив из множества, т.е. в результате принятия решения, происходит тоже самое (уменьшение неопределенности).

Это значит, что каждый выбор, каждое решение порождает определенное количество информации, а значит может быть описано в терминах теории информации.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.