Рефераты. Моделирование как метод разработки управленческого решения  
 








Рисунок 4.1. Этапы формирования требований при разработке адекватных моделей процесса управления


Отметим, что наряду с требованием соответствия модели объекту управления важную роль играет требование соответствие модели субъекту управления, т. е системе ценностей и предпочтениям ЛПР, уровню владения ЛПР необходимыми профессиональными навыками работы с современными управленческими технологиями, доверия ЛПР к результатам моделирования.

Однако недостаточный анализ ситуации принятия решения нередко приводит к ошибочно принятым управленческим решениям и, следовательно, к дополнительным неоправданным потерям.

Следует отметить также, что один и тот же объект управления может быть представлен с помощью различных моделей в зависимости от того, какого аспекта объекта управления касается принимаемое решение.

Модели процесса управления могут различаться по степени сложности. Например, так называемые мультипликативные факторные модели, характеризующие влияние основных факторов на развитие ситуации принятия решения, являясь достаточно простыми, в то же время вызывают дополнительные сложности при их использовании.

В то же время трудоемкие при разработке экономико-математические модели при их использовании достаточно удобны при наличии современных систем поддержки и сопровождения процесса выработки управленческих решений.

В процессе реального управления организацией менеджер сталкивается с полем проблем, которые должны быть решены в процессе деятельности организации.

Проблемы определяются стратегическими и тактическими целями организации, состоянием внешней и внутренней среды, необходимыми и имеющимися в наличии ресурсами, конкретными значениями неуправляемых и управляемых параметров, ходом самого процесса управления.

В ходе процесса управления вырабатываются альтернативные варианты решений, образующие пространство возможных решений.

Основной задачей управленца является определение для каждой проблемы, принадлежащей возникшему полю проблем, альтернативного варианта решения из пространства решений, позволяющего в наибольшем соответствии с целями организации решить эту проблему.

Для определения наиболее предпочтительного альтернативного варианта решения для конкретной проблемы используются решающие правила, на основании которых осуществляется сравнение и выбор альтернативных вариантов.

Решающие правила позволяют как при одноцелевом, так и при многоцелевом подходе дать однокритериальную или многокритериальную оценку сравниевым вариантам решений.

К числу наиболее распространенных решающих правил можно отнести:

Метод «свертки», при котором рассчитываются значения единого комплексного критерия для каждого альтернативного варианта решения;

Принцип Парето, при котором сопоставляются оценки альтернативных вариантов решения по нескольким критериям и отбрасываются «доминируемые» решения;

Лексикографический выбор, при котором выбор осуществляется сначала по наиболее важным критериям, а затем по менее важным;

Правило максимина, используемое при игровом подходе и реализующее стратегию гарантированного результата, когда выбирается вариант, дающий максимальный эффект при наименее благоприятных действиях противника, и др.

Большое распространение получили решающие правила, основанные на использовании функции полезности альтернативного варианта решения.



2 Разработка и принятие решений в условиях неопределенности и риска

2.1 Цель практической части курсовой работы


Выполнение расчётного задания с применением методов подготовки управленческого решения в условиях неопределенности и риска. Обоснование и выбор одной из альтернатив.

2.2 Постановка задачи


Таблица исходных данных к тестовой задаче

варианта

Затраты

на НИОКР и внедрение новой

продукции,

млн. руб./ год

Эффект

от использования новой

продукции,

млн. руб./ год

Затраты

на модернизацию

продукции,

млн. руб./ год

Эффект от использования модернизированной продукции, млн. руб. / год

Априорные

вероятности

«состояний

природы»

Условные

вероятности

исходов

эксперимента

1

2

3

4

5

6

7

12

1,2

6

0,6

1,4

0,25;0,50;0,25

0,25 0,80 0,20

0,15 0,10 0,70

0,65 0,25 0,15


Рассматривается фирма, занимающаяся созданием и эксплуатацией наукоёмкой продукции. Перед руководством фирмы возникла проблема: следует ли принять решение о разработке новой продукции, то есть о проведении научно-исследовательских и опытно-конструкторских работ (НИОКР), или же отказаться от разработки новой продукции в пользу решения о проведении модернизации ранее выпущенной продукции. Ресурсы фирмы ограничены настолько, что заниматься разработкой новой и модернизацией ранее выпущенной продукции одновременно не представляется возможным. Принятие решения осложняется тем, что продолжительность разработки и внедрения новой продукции точно не известна и является дискретной случайной величиной (5, 10 или 15 лет).

Таким образом, решение принимается в условиях неопределённости и связано с риском непроизводительных затрат в рассматриваемом пятнадцатилетнем горизонте планирования.

2.3 Формализация задачи методами теории игр


Расчёты затрат и экономического эффекта (млн. руб.) в зависимости от продолжительности разработки, внедрения и использования новой продукции до конца 15-летнего планового периода удобно представить в виде таблицы возможных ситуаций.


Таблица ситуаций

Решение планового органа

Продолжительность разработки,

лет

Затраты на НИОКР

и внедрение

Эффект

от использования новой продукции

Затраты

на модернизацию продукции

Эффект от использования модернизированной продукции

Суммарный эффект

Прово-

дить

НИОКР

5

-6

60

-6

14

62

10

-12

30

-3

7

22

15

-18

0

0

0

-18

Не про-

водить

НИОКР

5

0

0

-9

21

12

10

0

0

-9

21

12

15

0

0

-9

21

12


Перейдём от неё к «платёжной» матрице игры, которую будем называть матрицей эффектов.



Матрица эффектов

Решение планово-го органа

Состояние природы


В1

В2

В3

А1

62

22

-18

А2

12

12

12


Где А={А1,А2} – множество решений планирующего органа;

А1 – соответствует решению о проведении НИОКР;

А2 – соответствует решению об отказе от НИОКР;

В={В1,В2,В3} – множество состояний «природы», олицетворяющее неопределенность ситуации,

В1 – проведение НИОКР потребует 5 лет;

В2 – проведение НИОКР потребует 10 лет;

В3 – проведение НИОКР потребует 15 лет.

Рассматриваемая задача решается методами математической теории игр с использованием «платёжной» матрицы (матрицы эффектов либо матрицы потерь) и выбранных критериев принятия решения поэтапно:

–                    в условиях полной неопределённости;

–                    в условиях частичной определённости;

–                    в условиях эксперимента, предшествующего принятию решения;

–                    с применением аппарата решающих функций и использованием функции риска.

2.4 Решение задачи


Критерии принятия решений в условиях полной неопределённости.



Критерий Уолда

Решение планового органа

Минимум выигрыша

А1

-18

А2

12*


EY = maxi minj eij


Максимаксный критерий

Решение планового органа

Максимум выигрыша

А1

62*

А2

12


EM = maxi maxj eij


Критерий Гурвича

Решение планового органа

Степень оптимизма a


0

0,2

0,3

0,4

0,6

0,8

1

0

А1

-18

-2

6

14

30

46

62

-18

А2

12

12

12

12

12

12

12

12

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.