Рефераты. Застосування експертних систем у медицині

На основі табл. 1.4 та 1.5 визначають функції належності нечітких термів ДН, Н, НС, С, ВС, В, ДВ:



Наведені формули переписуються з урахуванням табл. 1.1



Аналогічно формуються рівняння для

Для формування функцій належності з використанням наведених логічних рівнянь необхідно визначити множину функцій належності нечіткихтермів: Один ізможливих варіантів показаний на рис. 1.2


Рис. 1.2. Функції належності нечітких термів

Запис функцій належності в аналітичному вигляді для семи розглянутих раніше діагнозів буде мати такий вигляд:



Експертна система іридодіагностики


Проблеми використання Байєсівської стратегії в іридодіагностичних ЕС. Часто виникає питання, чому замість методу Байєса в медичних ЕС використовуються менш ефективні методи, наприклад, табличні алгоритми. В ця ситуація розглядається на прикладі іридодіагностики. Назвемо основні причини використання в іридодіагностиці малоефективних табличних алгоритмів замість більш ефективних алгоритмів, що використовують метод Байєса:

статистична залежність між іридоознаками;

необхідність знання апріорних ймовірностей P(Уj) захворювань Уj;

неоднорідність та неповнота даних;

наявність зовнішніх та внутрішніх завад.

Суть методу іридодіагностики. Метод іридодіагностики, оснований на сигнальній функції екстерорецепторів райдужної оболонки ока, є одним із найбільш інформативних і достовірних методів раннього виявлення генетичних і патологічних порушень в організмі. Цей метод характеризується відсутністю будь-яких протипоказань (за винятком епілепсії, як відносного протипоказання у зв'язку з провокуючою приступ дією світла), повною безпекою і нетравматичністю.

У процесі огляду пацієнта лікар-іридолог, оцінюючи структурний стан райдужної оболонки та адаптильно-трофічні зміни, що відбуваються у ній в часі та просторі, маючи можливість оперативного огляду в одному полі зору проекційних зон усього організму, діагностує з достатньо високою точністю спадкові особливості пацієнта, функціональну та органну слабкість певних органів і систем, що дозволяє в кінцевому результаті зробити висновки про резервні можливості організму, скласти прогноз, тобто побудувати вектор майбутнього стану здоров'я організму обстежуваного. На основі поєднання різних іридознаків на райдужній оболонці іридолог діагностує місцезнаходження патологічного процесу і певною мірою його характер.

Статистична залежність ознак. Прості та зручні для розрахунків співвідношення (1.1) справедливі у передбаченні статистичної незалежності використовуваних ознак. У випадку статистично залежних ознак необхідно використовувати складніший вираз, складність якого полягає в необхідності знання багатомірних густин розподілу ймовірностей Р(Х1,Х2,...,Хi) та Р(ХІ,Х2,...,Хi/Уj]).

Методика оцінювання одномірних розподілів ймовірностей Р(Xi) і Р(Хi/Yj), які придатні лише для обчислень за формулами (1.1), тобто в передбаченні статистичної незалежності ознак. Однак у цьому випадку відзначається наявність статистичної залежності між ознаками - як наслідок, формули (1.1) не можуть бути використані.

У результаті аналізу статистичної залежності іридоознак можна зазначити, що:

між іридоознаками існує статистична залежність, яка має два основних механізми -"фізіологічний" і "математичний". У першому випадку залежність зумовлена або проявом одного і того самого захворювання у вигляді декількох ознак, або проявом ознак декількох залежних захворювань, в другому випадку це залежність між комплексною іридоознакою, утвореною сукупністю елементарних іридоознак, та елементарними іридоознаками, які входять до її складу;

на сьогодні найбільше вивчена залежність між різними іридоознаками та ознакою "колір райдужної оболонки", що, очевидно, пояснюється не стільки інформативністю ознаки "колір райдужної оболонки", скільки простотою та легкістю його оцінювання.

Можна назвати основні чинники фізичної природи статистичної залежності ознак:

каузальність (причинно-наслідкова залежність);

синхронізм

У першому випадку поява ознаки X зумовить іздеякою ймовірністю появу іншої ознаки Y. У другому випадку передбачають наявність третьої, прихованої від спостереження (латентної) або просто ігнорованої, події Z, каузально зв'язаної з ознаками X і Y, які в результаті такого зв'язку стають статистично залежними.

Для оцінки характеру та міри статистичної залежності ознак X і Y можна застосовувати поняття регресії і коефіцієнтів регресії. Регресією Y на X називається умовне математичне очікування (MO) випадкової величини (ВВ) Y для фіксованого значення Х=х:


E{Y(x)}=E{Y/X = x}.


Лінією регресії Y на X називається MO, що розглядається як функція змінної х. Аналогічно визначається регресія X на Y. Лінії регресії Y на X та Х на Y не збігаються. Регресія називається лінійною, якщо лінія регресії пряма. Для незалежних ВВ лінії регресії перетворюються в прямі, паралельні до координатних осей.

Якщо позначити колір райдужної оболонки символом X, а тип райдужної оболонки — символом Y, то можна розглядати значення умовної густини P(Y/X). Враховуючи суттєву нерівномірність цієї функції Y (для фіксованих значень X) можна наближено оцінити її середнє значення (математичне очікування) - йому відповідає максимум густини P(Y/X) як функції Y.

Характер статистичної залежності між ознаками може бути як лінійним, так і нелінійним. Для лінійної залежності використовується поняття "коефіцієнт кореляції"


rXY = Е{(Х - Е{ X})(Y - E{Y})} / axay,


де axay -середньоквадратичні відхилення ВВ X і У:


rXY =E{(X-E{X})(Y-E{Y})}/ axay.


У загальному випадку |rXY|<1 - Рівність rXY=0 має місце для некорельованих (і незалежних - у випадку нормально розподілених X та Y) ВВ, а |rXY|=1 — для лінійно залежних детермінованих ВВ.

Неповнота апріорних даних. Інша суттєва перешкода для використання формули Байєса полягає в необхідності знання апріорних імовірностей P(Yj) захворювань Yj. Якщо ця інформація відсутня, можна вважати всі гіпотези рівноймовірними, тобто P(Yj)=1/J, де У - кількість альтернативних захворювань.

Однак це може привести або до недостатньо високої вірогідності висновків (у випадку фіксованої кількості іридоознак, що спостерігаються), або буде вимагати збільшення обсягу спостережень (у випадку фіксованої досить високої вірогідності висновків).

Як приклад розглядається спроба використання у формулі Байєса статистичної інформації про деякі ознаки ниркової патології, зокрема такої інформації: "...Характерним для ниркової патології симптомом був лімфатичний розарій, який виявляли в обстежуваних хворих у 57% випадків... При захворюваннях легень, шлунково-кишкового тракту, серцево-судинної і нервової систем лімфатичний розарій виявляли рідше, ніж при захворюваннях нирок у 9-22% випадків... Вказана обставина дозволяє лікарю міркувати так: у випадку будь-якого виявлення лімфатичного розарію на райдужній оболонці можна передбачити, але в жодному разі не можна стверджувати, що у цього хворого є зміни стосовно нирок".

У розглянутому випадку не враховується частота зустрічі ниркової патології взагалі, безвідносно до будь-якої сукупності діагностичних ознак, отже апріорні ймовірності гіпотез Y1 ”є захворювання нирок" і Y2 ”немає захворювання нирок" можна прийняти однаковими: Р(Y1)-Р(Y2)=0,5.

Припустимо, що мають місце такі умовні ймовірності Р(Х/Yj):

Р(ХІ/Y1) = 0,57; Р(Х1/Y2) = 0,155,

Де X1означає "є лімфатичний розарій", а значення величини Р(Х1/Y2) = 0,155отримано як середнє арифметичне значення 0,09 і 0,22 (9-22%).

Згідно з (1.1),


(1.2)


Оскільки


(1.3)


З (1.2) випливає:



Аналогічно


Нерівність Р(Y1/X1) > Р(Y2/X1) відповідає виразу "можна передбачити наявність захворювання нирок", а той факт, що Р(Y1/X2)<1, відповідає фразі "ні в якому разі не можна стверджувати". Слова "ні в якому разі" — свідчення надзвичайної обережності автора: адже в 8 випадках з 10 твердження виявиться справедливим.

Далі можна врахувати апріорну інформацію у вигляді розподілу Р(Yj) та оцінити її вплив на вагомість висновків тепер. Вказано, що за результатами профілактичного огляду школярів у віці 12-17 років відомо, що патологіянирок має місце в 68% обстежених.

Якщо у виразі (1.2) прийняти, що Р(Yj)=0,68 та Р(Y2)=0,32, то отримаємо.



Отже, завдяки врахуванню апріорної інформації ймовірність висновку на користь гіпотези Y1=” є захворювання нирок" зросла на 0,1, а відносна надійність висновку, що характеризується відношенням Р(Y1/X1)/Р(Y2/X1) збільшилась з 4 до 9 разів, тобто більш ніж у 2 рази.

Виграш від використання апріорної інформації тим суттєвіший, чим більший її обсяг, тобто чим більш нерівномірний розподіл Р(Yj). Наприклад, за результатами другого профілактичного огляду, де середній вік обстежуваних складав 46,5 років, за допомогою аналогічних обчислень для Р(У1)=0,82 і Р(Y2)=0,18 отримуємо


Відношення Р(Y1/X1)/Р(Y2/X1) тепер приблизно рівне 16, тобто збільшилось порівняно з початковим у 4 рази.

На основі аналізу використання апріорної інформації у вигляді повторюваності різних захворювань можна зробити такі висновки:

врахування апріорної ймовірності суттєво впливає на вірогідність висновків;

апріорна інформація не стосується конкретного виду діагностування — це інформація загальномедичного характеру, яка зберігається в певних документах і відображає залежність Р(Yj) від багатьох факторів і умов (соціальних, територіальних, кліматичних, екологічних, санітарно- епідеміологічних тощо);

в процесі діагностики лікар практично завжди використовує апріорну інформацію на інтуїтивному рівні.

"Дефекти" даних. Під "дефектами" в цьому контексті розуміється неоднорідність і неповнота даних.

Прикладом неоднорідності даних є опис періодичності іридоознак як у кількісній (числовій), так і в якісній (вербальній) формі. Основні причини цього явища такі:

недостатнє дослідження ознак;

звичка практикуючих лікарів до вербального опису.

Неповнота даних може бути зумовлена або недостатньою мірою дослідження іридоознак, або недбалістю авторів публікацій.

Факториу що заважають. Стосовно методу іридодіагностики, фактори, що заважають (завади) можна умовно розділити на зовнішні та внутрішні.

До зовнішніх факторів відносяться неоднорідність складу пацієнтів (стать, вік, освіта, місце проживання, соціальний стан тощо), неоднорідність складу і стану лікарів (рівень кваліфікації, психофізіологічний стан лікаря в момент обстеження), неоднорідність умов обстеження (кліматичних, екологічних, санітарно-епідеміологічних тощо).

До внутрішніх факторів відносяться проблеми іридології як науки. Першою з цих проблем варто назвати неможливість диференціювання одними лише засобами візуального аналізу моменту появи захворювання — в більшості випадків тільки з урахуванням клінічних даних і, отже, тільки шляхом діалогу з пацієнтом іридолог може встановити, ознаки якого захворювання спостерігаються: минулого, теперішнього чи майбутнього.

Другою проблемою можна назвати ту обставину, що на сьогодні не створена універсальна іридологічна схема проекційних зон, яка задовольнила б усіх іридологів і, ймовірно, така схема ніколи не буде створена внаслідок принципових труднощів:

формування нервових шляхів у кожної людини індивідуальне, у зв'язку з чим кожний орган має не точну, а ймовірнісну проекцію;

можливість виникнення ознак, пов'язаних не з патологією органів, а з патологією провідних нервових шляхів, що досить складно надійно визначити;

можливість виникнення іридоознак, що пов'язані не з патологією органів, а класифікуються за типом відбитої рефлекторної іррадіації.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.