Регуляторный ген tat (от англ. trans-activator of transcription) ответственен за вспышку репликации, которая наблюдается, к примеру, в Т-4 клетках, когда они активируются при встрече с антигеном (чужеродной молекулой, вызывающей иммунный ответ). Ген tat необычен как по структуре, так и по своему действию. Он состоит из двух нуклеотидных последовательностей, расположенных довольно далеко друг от друга. В результате его транскрипции образуется РНК (первичный транскрипт), которая должна подвергнуться сплайсингу (промежуточный сегмент вырезается и кодирующие последовательности соединяются), чтобы она превратилась в мРНК и по ней синтезировался белок. влияние белка - продукта гена tat очень велико: он может повысить уровень экспрессии вирусных генов в 1000 раз по сравнению с тем, что наблюдается у мутантов HIV без этого гена. Стимулирующий эффект распространяется на все вирусные белки - как на структурные компоненту вирионов, так и на регуляторные белки, включая белок кодируемый самим геном tat. Благодаря такой положительной обратной связи, как только механизм с участием гена tat активировался, очень быстро образуется огромное количество вирусных частиц.
В то время как ген tat усиливает синтез всех вирусных белков без разбора, второй регуляторный ген, rev (от англ. regulator of virion-protein expression - регулятор экспрессии белков вириона) обладает избирательным действием, благодаря которому производятся либо регуляторные белки, либо компоненты вириона. Белок - продукт гена rev, как и в случае гена tat, кодируется разобщенными нуклеотидными последовательностями, которые соединяются в результате сплайсинга РНК. В регуляции этим белком участвуют еще две последовательности. Одна из них действует как репрессор: препятствует трансляции транскриптов, которые ее содержат. Другая последовательность взаимодействует с белком rev и снимает эффект первой последовательности.
Последовательность - репрессор, называемая CRS (от англ. cis-acting repression sequence), имеется в мРНК, по которым синтезируются белки, формирующие вирионы - сердцевинные белки, ферменты репликации и белок оболочки; мРНК регуляторных белков - продуктов генов tat и самого rev - не содержат CRS. В отсутствие белка - продукта гена rev - последовательность CRS не дает накапливаться длинным мРНК, по которым синтезируются белки для вирионов. Напротив, короткие мРНК, кодирующие регуляторные белки не имеющие CRS, стабильны и транслируются.
В присутствии белка - продукта гена rev происходит “переключение”. Этот белок действует на последовательность CAR (от англ. cis-acting rev-responsive sequence), которая тоже содержится в длинных мРНК. При этом нейтрализуется CRS и начинают накапливаться полноразмерные мРНК, и вместо регуляторных белков синтезируются белки, из которых собираются новые вирионы. Таким образом , механизм с участием гена rev может определять переход от скрытой инфекции к активному размножению вируса.
Однако в ходе репликации взаимодействие между механизмами rev и tat может сдерживать размножение вируса, нейтрализуя друг друга. Продукт гена tat усиливает синтез самого себя и белка гена rev, тогда как продукт гена rev замедляет собственный синтез и синтез белка кодируемого геном tat. В результате устанавливается своего рода гомеостаз, характеризующийся постоянными уровнями белков, кодируемых генами tat и rev, и умеренным производством вирусных частиц. Ограниченная репликация позволяет вирусу воспроизводиться годами, не убивая зараженные клетки, поэтому такой тип генетической регуляции может быть адаптивным признаком ретровирусов, хозяевами которых являются виды с долгим временем жизни, такие как человек.
Помимо активатора (tat) и избирательного регулятора (rev) у HIV есть негативный регулятор. Который замедляет транскрипцию вирусного генома. Ген негативного регуляторного фактора, обозначаемый nef (от англ. negative-regulatory factor), возможно, определяет способность HIV прекращать размножение и переходить в состояние покоя.
Последовательность, являющаяся мишенью белка - продукта гена nef, расположена в начале вирусного генома в длинном концевом повторе. Она называется негативным регуляторным элементом (NRE, от англ. negative- regulatory element). NRE подавляет транскрипцию даже сама по себе; если вирусный LTR, лишенный этой последовательности, ввести в незараженную клетку, он обеспечивает повышенный уровень транскрипции клеточных генов. Продукт гена nef усиливает эффект NRE. но каким образом он достигает этого - загадка.
Сложные механизмы регуляции размножения HIV действуют не в изоляции: они тесно связаны с метаболизмом клетки-хозяина. Начать с того, что вирус использует клеточный аппарат для транскрипции своих генов и синтеза белков. В частности, клеточные факторы явно играют роль во вспышке репликации HIV, происходящей при участии гена tat, когда зараженная Т-клетка стимулируется антигеном. Особенности молекулярного “климата” клетки-хозяина также, вероятно, как-то влияют на скорость размножения вируса, которая различна в различных типах клетки.
Возможно, для связи клеточных и вирусных процессов имеет значение связь клеточных белков с LTR в начале вирусного генома. Последовательности в LTR определяют сайт инициации транскрипции вирусных генов - стартовую точку, в которой начинается синтез мРНК. По крайней мере восемь белков, которые в норме участвуют в клеточной транскрипции, связываются с клеточной ДНК в сайте инициации транскрипции или рядом с ним. Они играют определенную роль в процессе транскрипции. Один из белков, который узнает инициаторные последовательности, играет специфическую роль в Т-клетках и других лимфоцитах. Этот белок активируется, когда лимфоцит стимулируется антигенами и начинает размножаться. Считается, что он способствует размножению клетки, усиливая транскрипцию. Как выяснилось, при стимуляции зараженных Т-клеток усиливается связывание этого белка с геномом провируса. Таким образом активация этого белка может быть одним из путей ускорения размножения HIV при стимуляции Т-клетки.
Вероятно, набор клеточных факторов, действующий на вирусный геном, варьирует в зависимости как от условий, так и от типа клетки-хозяина. Некоторые клетки, находясь в состоянии покоя. Могут просто не иметь белков, необходимых для инициализации транскрипции, так что инфекция остается скрытой. В других клетках скорость размножения вируса может быть ограничена из-за низкой концентрации инициаторных факторов или из-за избытка белков, ингибирующих синтез мРНК. Таким образом, клетка-хозяин при помощи собственных факторов транскрипции создает молекулярное окружение, влияющее на регуляторные механизмы HIV.
После того как в результате действия описанных выше механизмов началось производство вирусных частиц, в игру вступает последний ген. Этот ген, названный vif (от англ. virion infectivity factor - фактор инфекционности вириона), кодирует небольшой белок, который обнаруживается в цитоплазме зараженных клеток и вокруг них в межклеточной среде, а так же в свободных вирусных частицах. Белок - продукт гена vif каким-то образом усиливает способность отпочковавшегося вириона заражать другие клетки. У штаммов HIV с мутациями, инактивирующими vif, вирионы имеют нормальный вид, содержат полный набор РНК и ферментов, но заражают клетки намного менее эффективно.
3. Этапы заражения клетки вирусом СПИДа
Первый шаг любой вирусной инфекции - связывание вирусной частицы с компонентом мембраны заражаемой клетки. Для HIV роль такого рецепторного компонента играет белок, называемый антигеном CD4.(Антиген - это молекулярная структура, которая узнается антителом.) из этого следует, что распределение CD4 в организме должно соответствовать тропизму HIV, т.е. спектру клеток и тканей, поражаемых вирусом. Антиген CD4 встречается главным образом на лимфоцитах, называемых Т-4 хелперами, которые являются важным элементом иммунной системы, а так же на некоторых других клетках.
Как было установлено, связывание происходит, если CD4 взаимодействует с белком оболочки вируса gp120, который распределен на внешней поверхности мембраны. Удалось определить специфические фрагменты молекул CD4 и gp120, участвующие в связывании. Эти результаты открывают возможность двойной борьбы с HIV: препятствовать взаимодействию вируса с клеточным рецептором CD4 можно блокируя сам рецептор или экранируя вирусный белок gp120.
Вследствие поражения клеток крови, несущих антиген CD4, особенно Т-4 лимфоцитов, по его концентрации можно судить о зараженности СПИДом. В клеточных культурах можно так же наблюдать еще один весьма удобный для исследования признак заражения - образование многоядерных синцитиев. Синцитий представляет собой гигантскую клетку, содержащую множество ядер внутри одной мембраны. Он формируется в результате слияния клеток, зараженных HIV, со здоровыми клетками, несущими молекулы рецептора.
Наиболее строгое доказательство такого механизма взаимодействия вируса с клеткой стал эксперимент, проведенный в 1984 г. в Колумбийском университете США. Удалось перенести ген, кодирующий CD4, в клетки HeLa - линию клеток раковой опухоли шейки матки. Эти клетки не содержат CD4 и в норме не заражаются HIV. Тогда как измененные клетки HeLa, несущие CD4, могут быть заражены HIV, после чего они быстро сливаются в гигантские синцитии.
Этот эксперимент дал, кроме того, один неожиданный результат, который до сих пор полностью не объяснен. Человеческий ген CD4 был введен в мышиные Т-клетки, которые тем самым приобрели способность производить соответствующий белок. Частицы HIV связывались с этими измененными клетками, однако признаков инфекции не было: не образовывался ни синцитий, ни инфекционные вирусные частицы. Это было удивительно, так как мышиные клетки вообще-то способны поддерживать размножение HIV при некоторых условиях. По всей видимости, мышиные клетки не могут быть заражены частицами HIV даже в присутствии рецепторов HIV. К заражению мышиных клеток оказались также неспособны некоторые родственные вирусы. Эти факты позволяют предполагать, что необходим еще какой-то компонент клеточной поверхности для того, чтобы вирус, прикрепившийся к клеточной мембране смог проникнуть внутрь клетки. Природа такого дополнительного фактора пока не ясна.
Связывание вирусного gp120 с клеточным CD4 - это только первый этап проникновения вируса в клетку. Последующие этапы пока менее понятны. Например, как попадает в клетку вирусный генетический материал? Простейшая и наиболее вероятная возможность состоит в том, что оболочка вириона сливается с клеточной мембраной и содержимое вирусной частицы (включая генетический материал) оказывается внутри клетки. Другой возможный путь - эндоцитоз, т.е. образование небольшого впячивания клеточной мембраны, которое затем отпочковывается внутрь, превращаясь в замкнутый мембранный пузырек. Пузырек полностью окружает вирусную частицу и переносит ее внутрь клетки. Там мембрана, образующая пузырек (теперь он называется эндосомой), закисляется. Это приводит к конформационным изменениям, слиянию ее с вирусной мембраной и освобождению содержимого вирусной частицы во внутриклеточное пространство.
Независимо от того, что на самом деле происходит - прямое слияние или эндоцитоз - вирусная мембрана должна претерпеть слияние с клеточной. Как же это осуществляется? Согласно одной из гипотез, представляющейся вполне правдоподобной, связывание gp120 с CD4 вызывает изменение конформации белка gp120, вследствие чего обнажается часть другого белка оболочки, gp41, в норме скрытого под молекулой gp120. Эта область gp41 гидрофобна и потому должна внедряться в мембрану, а не оставаться снаружи, в водной среде, окружающей клетку. Оказавшись открытой, гидрофобная область gp41 взаимодействует с близлежащей частью клеточной мембраны и индуцирует ее слияние с вирусной мембраной. Пока не ясно, нужен ли для связывания с gp41 еще какой-то рецептор клеточной поверхности, помимо CD4, или же gp41 сам внедряется прямо в клеточную мембрану.
Страницы: 1, 2, 3