Рефераты. Строение, свойства и биологическая роль биотина и тиамина p> [pic]

Биотина в культурах Achromobacter, выращенных на синтетических средах, к которым добавляли либо 3-С14-цистеин, либо МаНС14Оз. Синтезированный бактериями радиоактивный биотин расщепляли и таким образом изучали распределение в нем радиоактивного углерода. Основываясь на полученных результатах, Lezius и соавторы в 1963 г. предложили схему синтеза биотина.

[pic]

Согласно этой схеме, началом синтеза является конденсация пимелил-КоА и цистеина. Затем происходит декарбоксилирование, что приводит к образованию
9-меркапто-8-амино-7-оксопеларгоновой кислоты. Взаимодействие аминогруппы этой кислоты с карбамилфосфатом вызывает образование уреидного производного, которое после отщепления воды может циклизоваться, давая биотин с характерным для него двойным циклом.

По способности синтезировать биотин и дестиобиотин все исследованные организмы делятся на 4-е группы:

1. Способные синтезировать большое количество биотина и дестиобиотина из глюкозы в отсутствие пимелиновой кислоты.

2. Стимулирующие при помощи пимелиновой кислоты и дестибиотина биосинтез биотина.

3. Активно осуществляющие превращение дестибиотина в биотин.

4. Образующие дестиобиотин из пимелиновой кислоты, но не способные превращать его в биотин.

Изучено более 600 штаммов бактерий, использующих углеводороды для синтеза биотина, из которых 35, синтезируют витамин в больших количествах (>100 мкг/мг). Наибольшее количество биотина образует Pseudomonas sp. штамм 5-2 при выращивании на керосине. Специфическим активатором накопления биотина является аденин. Экзогенные пимелиновая и азелаиновая кислоты увеличивают образование блотина. из керосина. Лучшими источниками углерода оказались н- алканы с углеродной цепью из 15—20 атомов, в частности н-ундекан.
Промежуточными продуктами в синтезе биотина из ундекана являются пимелиновая и азелаиновая кислоты (Toshimichi e. a., 1966).

Исследование биосинтеза биотина в растениях (В. Филиппов, 1962 г.) показало, то каждый орган растения и каждая его клетка синтезирует витамин в эмбриональной фазе своего развития. В дальнейшем синтез замедляется и, по- видимому, прекращается, но содержание его различных тканях долгое время остается постоянном.

5. Обмен биотина в организме
Об обмене биотина известно немного. Биотин, поступивший с пищей в связанном состоянии, отщепляется от белка под действием протеолитических ферментов, переходит в водорастворимую форму и всасывается в кровь в тонком кишечнике.
В кишечнике происходит также всасывание биотина, синтезированного бактериями желудочно-кишечного тракта. Всосавшийся в кровь биотин связывается с альбумином сыворотки разносится по всему организму.
Наибольшее количество биотина накапливается в печени, почках и надпочечниках, причем у мужчин оно несколько больше, чем у женщин.

Содержание биотина в тканях человека (Р. Д. Вильяме, 1950)
|Органы и ткани |Биотин в мкг/г |
| |у женщин |у мужчин |
|Кожа |— |0 01 |
|Мозг |0,03 |0,08 |
|Легкие |0,02 |0,01 |
|Сердце |0,17 |0,19 |
|Мышцы |0,02 |0,04 |
|Желудок |0,19 |0,11 |
|Ободочная кишка |0,08 |0,09 |
|Печень |0,62 |0,77 |
|Молочная железа |0,04 |— |
|Селезенка |0,04 |0.06 |
|Почки |0 58 |0,67 |
|Надпочечники |0,35 |0,23 |
|Семенники |— |0,05 |
|Яичники |0,03 |—— |

Что касается содержания биотина в крови человека, то по этому вопросу имеется ограниченная и порой противоречивая информация. Bhagavan и Coursin в 1967 г. определили содержание биотина микробиологическим методом в крови
30 здоровых лошадей и 25 взрослых людей и показали, что в среднем в крови взрослых людей содержится 25,7 ммкг% биотина (12—42,6 ммкг%), а в крови детей несколько больше—32,3 ммкг% (14,7—55,5 ммкг%). По данным Baugh
(1968), средний уровень биотина в цельной крови составляет 147 ммкг% (82—
270 ммкг%). Какой-либо разницы, в содержании биотина в .крови в зависимости от пола и возраста не отмечено. Содержание биотина в молоке женщины резко изменяется в период кормления. В первый день после родов содержание биотина b молоке невелико и только на 10-й день повышается до 0,33 мкг на 100 мл.

Биотин почти не подвергается Обмену в организме человека и выводится в неизмененном виде в основном с мочой. У здоровых людей выведение биотина с мочой составляет 11—183 мкг в сутки, у новорожденных детей достигает максимума (4 мкг на 100 мл)_ на 2-й день жизни и снижается до нуля к 7-му дню. Содержание биотина в кале колеблется от 322 до 393 mкг в сутки. В норме выделение биотина с мочой и калом повышает поступление его с пище 3-6 раз. что свидетельствует о удовлетворении потребностей человека в биотине на счет бактериального синтеза в кишечнике. Через 6 часов после введения человеку массированной дозы биотина большая часть его выводится с мочой.
Содержание биотина в кале при этих же условиях изменяется в меньшей степени.
Небольшая часть карбоксильной группы боковой цепи биотина окисляется до
СО2 специфической оксидазой, которая обнаружена в печени и почках морской свинки и крысы.

Исследование распределения меченого биотина в тканях цыплят и крыс показало, что уже через 4 часа после выведения физиологической дозы меченного С1' по карбоксильной группе биотина около 16% метки включалось в печень, а 30% выводилось с калом и мочой в неизмененном виде
(Dakshinamurty, Mistry, 1963). В сердце, селезенке и легких радиоактивности не обнаружено. Менее 4% введенной дозы выводилось в виде выдыхаемого C14O2, что указывало на незначительное прямое окисление карбоксильной группы биотина. О распределении меченого биотина в различных клеточных фракциям можно судить по табл.

Содержание биотина в клеточных фракциях печени нормальных крыс

(Dakshinamurti, Misfry, 1963)
| |Нормальные животные |Авитаминозные |
|Фракция печени | |животные |
| |Общий |Связанный |Общий биотин (в|
| |биотин в|биотин в % |%) |
| |% |к общему | |
|Гомогенат |100 |92 |100 |
|Ядра |37 |99 |75 |
|Митохондрии |9 |89 |13 |
|Микросомы |2 |23 |о |
|Надосадочная жидкость |47 |91 |о |

Из таблицы видно, что 40—50% радиоактивности обнаружено в надосадочной фракции, полученной после центрифугирования гомогената печени крыс. В микросомах содержится незначительное количество витамина. Большая часть биотина в различных клеточных фракциях, за исключением микросом, присутствует в связанной с белком форме. Имеются и противоречивые данные о том, что большая часть биотина (более 60%) содержится в митохондриях печени животных и около 11%— в микросомах.
В настоящее время недостаточно исследована динамика содержания биотина в тканях в онтогенезе животных. По-видимому, яйцо и зародыш в начальной стадии развития наиболее богаты биотином. Развитие зародыша сопровождается снижением содержания биотина в тканях. Исключение составляют печень и почки, в которых содержание биотина значительно повышается в первые дни постэмбрионального развития.

6. Участие биотина в обмене веществ и механизм действия
К 1958—1959 гг. накопились данные, которые указывали на участие биотина в реакциях карбоксилирования. Установлено, что при биотиновой недостаточности нарушаются следующие функции печени животных: синтез цитруллина из орнитина, МН3 и С02, включение CО2 в пурины, карбоксилирование пропионовой кислоты, приводящее к образованию янтарной кислоты, включение С02 в ацетоуксусную кислоту. Однако механизм действия биотина в этих реакциях оставался невыясненным. Данные опытов с 2-C14- биoтинoм исключали возможность того, что С-атом уреидной группировки биотина переносится в качестве остатка угольной кислоты. Одним из обстоятельств, из-за которых подвергалась сомнению функция этого витамина как кофермента карбоксилирования, было (описанное в разное время) участие биотина в реакциях, в которых не происходило ни включения, ни отщепления
С02. Так, было обнаружено влияние биотина на дезаминирование аспарагиновой кислоты, серина и треонина и участие его в синтезе жирных кислот. Первые четкие доказательства коферментной функции биотина в реакции карбоксилирования появились в работах, посвященных именно синтезу жирных кислот. В этих работах отмечалось, что биотин является коферментом ацетил-
КоА-карбоксилазы, фермента, осуществляющего карбоксилирование ацетил-КоА с образованием малонил-КоА—первую стадию синтеза жирных кислот (Wakil, 1958).
К этому времени были получены доказательства существования еще одного биотинфермента, а именно (З-метил-кротонил-КоА-карбоксилазы (Lynen, Knappe,
1959). Все известные в настоящее время биотиновые ферменты катализируют два типа реакций:
1. Реакции карбоксилирования или фиксации С02, сопряженные с расщеплением

АТФ и протекающие согласно уравнению:

АТФ + НСОз + RH[pic]R—СОО- + АДФ + Фнеорг.

|Реакции |Источник фермента |
|Ацетил-КоА + С02+ АТФ[pic]Малонил-КоА + АДФ + Ф |Печень голубя |
|Я-Метилкротонил-КоА + С02 + АТФ[pic] | |
|[pic]Я -Метилглютаконил-КоА+ АДФ + Ф |Микробактерии |
|Пропионил-КоА + С02 + АТФ[pic] | |
|[pic]Метилмалонил-КоА + АДФ + Ф |Сердце и печень |
| |свиньи |
|Бутирил-КоА+С02 + АТФ[pic] Этилмалонил-КоА+АДФ+ Ф |Мышцы и печень |
| |голубя |
|Пируват + С02+ АТФ[pic]Щавелевоуксусная кислота |Печень голубя |

II. Реакции транскарбоксилирования, протекающие без распада АТФ, при которых карбоксилирование одного субстрата осуществляется при одновременно протекающем декарбоксилировании другого соединения:

R1—COO- + R2H[pic] R1H + R2— COO-

Поскольку все приведенные реакции являются обратимыми, возможен обратимый биосинтез АТФ. Во всех этих случаях имеет место включение С02 в реактивное ?-подожение ацил-КоА или винилгомоло-гичное ему положение (при карбо^силировании ?-метилкротонил-КоА).

К началу 60-х год5В были выделены и изучены карбоксилазы, осуществляющие указанные превращения —В 1960 г. установлено участие биотина в реакции транскарбоксилирования при исследовании синтеза пропионовои кислоты

СНз—СН—СО~S—КоА + СНз—СО—СООН [pic]

СООН

[pic] СНз-СНа—СО~S-КоА + НООС-СН2—СО—СООН

Биотиновые ферменты представляют собой олигомеры с большим молекулярным весом (порядка 700000) и, как правило, содержат 4 моля связанного биотина на 1 моль фермента, поэтому кажется вероятным, что они состоят из 4 субъединиц с молекулярным весом 175000, каждая из которых содержит одну молекулу биотина.

В работах Lynen (1964) расшифрован механизм участия биотина в реакциях карбексилирования. Установлено, что реакции карбоксилирования являются двухстадийными. Первая стадия сводится к образованию «активной С02» в форме
С02~биотинфермента:

АТФ + Н С0-2+ биотинфермент [pic]АДФ + Фнеорг. + С02~биотинфермент.

Вторая стадия заключается в переносе «активной С02» на акцептор:

С02~биотинфермент + R2H [pic]биотинфермент + R2— С00-
Аналогичный двух стадийный механизм предложен и для реакций транскарбоксилирования:

R1 —С00- + биотинфермент [pic]С02 ~биотинфермент R2H;

С02~биотинфермент + R2H[pic]R2— С00- + биотинфермент.

После установления существования «активной С02» в виде С02~биотинфермента установлен характер связи между С02 и биотином. Этому способствовало открытие того факта, что ?-метилкротонил-КоА-карбоксилаза способна карбоксилировать свободный биотин, переводя его в карбоксибиотин. В дальнейшем меченый карбоксибиотип был выделен в опытах с С14-бикарбонатом и идентифицирован как Г-М-карбоксибиотин. Его структура была подтверждена химическим синтезом. К атому времени уже было известно, что в биотиновых ферментах карбоксильная группа биотина соединена с ?-NH2-группой лизина ферментного белка ковалентной связью. На основании этих данных предложена структура С02~биотинфермента.

[pic]

Эта структура получила ряд экспериментальных подтверждений и в настоящее время является общепринятой для всех биотиновых ферментов.
Реакционная способность углекислоты, связанной с биотином, находит выражение в энергетических взаимоотношениях. Величина свободной энергии распада С02~биотинфермента равна 4,74 ккал/моль, что дает основание причислить С02~биотинфермента к «богатым энергией» соединениям.

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.