Рефераты. Применение современных стоматологических термопластических материалов в практике ортопедической стоматологии

Рис. 1 (Объяснение в тексте)


Молекулярному движению в полимерах подвержена не вся цепь. Движение происходит в отдельных сегментах, которые колеблются, вращаются и извиваются независимо друг от друга. Это движение зависит от температуры. При низких температурах движение происходит медленно или почти отсутствует, так что некристаллический или аморфный полимер при низких температурах хрупок и тверд, как стекло. Если материал содержит области кристалличности, они в целом действуют как армирующие элементы, и при низких температурах образец жесткий, твердый и труднорастворимый. Нагревание аморфного полимера ускоряет движение сегментов; по мере повышения температуры это движение становится столь сильным, что материал из твердого и хрупкого (стеклообразного) превращается в достаточно мягкий и пластичный. Температура такого перехода называется температурой стеклования Tст. В случае частично-кристаллического полимера это размягчение происходит только в некоторых местах структуры материала; кристаллические области остаются незатронутыми. Выше точки стеклования такие образцы становятся более гибкими и податливыми, но еще сохраняют свои армирующие кристаллические области, усиливающие жесткость. При дальнейшем нагревании достигается температура, когда плавятся кристаллические области; эта температура, Tпл, называется температурой плавления. Выше нее система ведет себя как очень вязкая жидкость. Такое поведение характерно для термопластов, у реактопластов подобных точек перехода нет.

В табл. 1 показаны критические температуры Tст и Tпл ряда важных промышленных термопластов. Все реактопласты после того, как произошла сшивка цепей, становятся твердыми и жесткими.

 

Таблица 1.

Полимер

Tст, °С

Tпл, °С

Полиэтилен

 80

135

Полипропилен

 10

180

Полистирол

100

Поливинилхлорид

80

270

Поливинилиденхлорид

 20

190

Полиметилметакрилат

105

Полиакрилонитрил

105

310

Найлон-6 (капрон)

50

223

Найлон-6,6

57

270

Полиэтилентерефталат

69

265

Полиформальдегид (полиоксиметилен, параформ)

 85

180

Полиэтиленоксид (полиоксиэтилен)

 67

70

Триацетат целлюлозы

130

300

Тефлон (политетрафторэтилен)

 113

325

Ниже Tст пластмассы хрупки и тверды, между Tст и Tпл – гибки и податливы, выше Tпл они являются вязкими расплавами.


Оптические свойства. Пластические материалы бывают различной степени прозрачности  от совершенно прозрачных до матовых. Все аморфные полимеры прозрачны, тогда как в частично-кристаллических полимерах появляется некоторая мутность из-за различий в показателях преломления кристаллических и аморфных областей, которые неодинаково отклоняют световые лучи; при этом свет рассеивается и материал выглядит мутным. Если степень кристалличности низка и средний размер кристаллических областей мал, менее 500 Å (1 Å = 10–10 м), тонкая пленка материала еще прозрачна (например, майлар, саран, профакс). Высокая же степень кристалличности и более крупные кристаллические области придают дымчатость даже тонким пленкам (например, полиэтилен, найлон-6, найлон-6,6).

Электрические свойства. Все органические пластмассы являются изоляторами, а потому находят применение в электротехнике и электронике. В табл. 2 приведены некоторые важные электрические свойства ряда промышленных пластмасс.

Свойства пластмасс зависят от их основных характеристик: а) природы мономеров; б) средней СП; в) степени кристалличности системы.


Таблица 2. Электрические свойства некоторых промышленных пластмасс

Полимер

Диэлектри-ческая проницаемо-сть при 60 Гц

Электри-ческая прочность, В/см

Коэффици-ент потери мощности при 60 Гц

Удельное сопротив-ление, Ом/см

Полиэтилен

2,32

6х106

5х10–4

1019

Полипропилен

2,5

2х106

7х10–4

1018

Полистирол

2,55

7х106

8х10–4

1020

Полиакрилони-трил

6,5

0,08

1014

Найлон-6,6

7,0

3х103

1,8

1014

Полиэтилен-

терефталат

3,25

7х103

0,002

1018

 

1.2 Термопластические материалы

 

Полиэтилен (ПЭ) [–CH2–CH2–]n существует в двух модификациях, отличающихся по структуре, а значит, и по свойствам. Обе модификации получаются из этилена CH2=CH2. В одной из форм мономеры связаны в линейные цепи (см. рис. 1) с СП обычно 5000 и более; в другой – разветвления из 4–6 углеродных атомов присоединены к основной цепи случайным способом. Линейные полиэтилены производятся с использованием особых катализаторов, полимеризация протекает при умеренных температурах (до 150оС) и давлениях (до 20 атм).

Линейные полиэтилены образуют области кристалличности (рис. 2), которые сильно влияют на физические свойства образцов. Этот тип полиэтилена (см. таблицу) обычно называют полиэтиленом высокой плотности; он представляет собой очень твердый, прочный и жесткий термопласт, широко применяемый для литьевого и выдувного формования емкостей, используемых в домашнем хозяйстве и промышленности. Полиэтилен высокой плотности прочнее полиэтилена низкой плотности.



СВОЙСТВА ПОЛИЭТИЛЕНА ВЫСОКОЙ ПЛОТНОСТИ

СП

от 1000 до 50 000

Тпл

129–135° С

Тст

ок. –60° С

Плотность

0,95–0,96 г/см3

Кристалличность

высокая

Растворимость

растворим в ароматических углеводородах только при температурах выше 120° С


Разветвленные полиэтилены первоначально получали нагреванием этилена (со следами кислорода в качестве инициатора) до температур порядка 200ОС при очень высоких давлениях (свыше 1500 атм). Разветвления уменьшают способность полиэтилена к кристаллизации, в результате эта разновидность полиэтилена имеет следующие свойства:


СВОЙСТВА ПОЛИЭТИЛЕНА НИЗКОЙ ПЛОТНОСТИ

СП

от 800 до 80 000

Тпл

108–115° С

Тст

ниже –60° С

Плотность

0,92–0,94 г/см3

Кристалличность

низкая

Растворимость

растворим в ароматических углеводородах только при температурах выше 80° С


Этот полиэтилен обычно называют полиэтиленом низкой плотности. Разработаны методы получения полиэтилена низкой плотности при низком давлении и умеренных температурах сополимеризацией этилена с другим олефином, например бутиленом CH2=CH–CH2–CH3. Там, где в цепь встраивается бутиленовая единица, образуется короткая боковая цепь:



В этом случае упаковка цепей не может быть столь же плотной, как для «чистого» полиэтилена. Полиэтилен низкой плотности представляет собой прочный, очень гибкий и слегка упругий термопласт, несколько более мягкий, легче формуемый и выдавливаемый, чем полиэтилен высокой плотности; полиэтилен низкой плотности находит широкое применение в производстве покрытий, упаковочных материалов и изделий, изготовляемых методом литьевого формования.

Полиэтилен  один из наиболее полезных и важных пластических материалов. Детали электронных устройств, покрытие картонных молочных пакетов, упаковочные пленки и игрушки  вот далеко не полный перечень того, что делают из полиэтилена.

Полипропилен (ПП) [–CH2–CH(CH3)–]n получают из пропилена C3H6. В 1954 Дж.Натта (Италия) определил его молекулярную структуру, открыв важный класс стереорегулярных полимеров. Боковые метильные группы CH3 могут располагаться в цепи полипропилена случайным образом

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.