Участие симпатико-адреналовой системы в хирургической агрессии не ограничивается гиперкатехоламинемией. Стрессовая реакция начинается возбуждением гипоталамо-гипофизарной зоны, в результате чего гипофиз выбрасывает АКТГ, антидиуретический, тиреотропный и другие тропные гормоны. Соответственно этому повышается гормональная активность коры надпочечников, щитовидной, поджелудочной и других желез внутренней секреции. Особое значение имеет участие гормонов коры надпочечников в общей реакции организма на операционную травму.
В крови увеличивается уровень обеих групп гормонов коры — глюкокортикоидных (кортизол и др.) и минералокортикоидных (альдостерон и др.), которые действуют соответственно своему физиологическому предназначению. Глюкокортикоиды влияют на метаболизм, воспалительную реакцию, лимфоидную ткань, а минералокортикоиды — главным образом на водно-электролитный баланс. Высокий уровень гормонов сохраняется и в первые дни послеоперационного периода.
Под суммарным воздействием гормонов коры надпочечников в условиях оперативного вмешательства существенно меняется биохимический и клеточный состав крови. Возникают лимфопения и эозинопения (из-за секвестрации эозинофилов в легких и селезенке), стимулируется выброс эритроцитов и тромбоцитов. Происходят изменения в пищеварительной системе: наблюдаются повышенная секреция желудочного сока и наклонность слизистой оболочки к аутолизу (могут возникнуть стрессовые эрозии и язвы).
Существенно меняется метаболизм, в частности возникает гиперкалиемия, гипергликемия, усиливается катаболизм белков и жиров, метаболический ацидоз вначале сопровождается респираторным алкалозом и др. Нарушается мочеобразование: увеличивается реабсорбция Na+ и воды, повышается экскреция К+, сокращается диурез.
Таким образом, наблюдается отчетливый синергизм между действием гормонов коры и мозгового вещества надпочечника (катехоламины). В периферических тканях гидрокортизон и адреналин действуют вполне синергично. Известно, что гидрокортизон участвует в преобразовании адреналина в норадреналин. Симпатико-адреналовая система в ходе операционного стресса «запускает» высокий уровень жизнедеятельности в организме, а гипофизарно-адренокортикальная система поддерживает этот уровень длительное время.
Этот сложный комплекс нейроэндокринной регуляции, запускающий первичные реакции операционного стресса, необходим для двух главных целей — повысить производство энергии и увеличить кровоснабжение мозга и сердца в условиях агрессии, которую организму предстоит выдержать. В начале операционного стресса происходят метаболические и функциональные сдвиги, направленные на достижение этих двух целей.
Распад глюкозы (первоначальный источник энергетических процессов в клетке) может осуществляться тремя путями: анаэробным гликолизом в цитоплазме (путь Эмбдена—Мейергофа), аэробным гликолизом в митохондриях (продолжение предыдущего, или цикл Кребса) и прямым окислением, также происходящим в цитоплазме аэробным путем (пентозный цикл Варбурга, или гексозомонофосфатный шунт).
Перечисленными тремя путями из одной молекулы глюкозы образуется АТФ как источник энергии, но в разных количествах:
1) при первом (анаэробном) пути, когда глюкоза распадается до молочной и пировиноградной кислот, образуются 2 молекулы АТФ;
2) при втором (аэробном) пути, когда образовавшиеся на предыдущем этапе молочная и пировиноградная кислоты вступают в цикл Кребса, образуется 36 молекул АТФ;
3) при третьем (прямое окисление, пентозный цикл, когда в процесс образования энергии вовлекаются липиды) получается около 117 молекул АТФ.
Реакция организма на хирургическую агрессию сопровождается ростом энергетических процессов и высоким катаболизмом. Повышенный расход энергетических веществ при этом неизбежен, и если нет их внешнего поступления, то истощаются запасы организма. Подобное состояние повышенного расхода энергии в ответ на операционную травму реализуется через стимуляцию симпатико-адреналовой системы.
Главным энергетическим «сырьем» организма являются глюкоза и ненасыщенные жирные кислоты. Адреналин повышает уровень глюкозы в крови, стимулируя распад гликогена в печени, и мобилизует жирные кислоты из липидов, активизируя все три процесса образования энергии через биологическое окисление. Установлено, что в условиях операционной агрессии в крови резко возрастает уровень глюкозы и свободных жирных кислот, которые содержатся лавным образом в триглицеридах — основном депо их. Триглицериды находятся в организме преимущественно в виде липопротеидов низкой плотности (бета-липопротеидов), поступающих в кровь при стрессовом состоянии в больших количествах.
Таким образом, в усилении энергетического метаболизма при операционном стрессе участвует не только углеводная система гликоген — глюкоза, но и фосфолипидный метаболизм, причем он покрывает около половины энергетических трат при стрессе.
Реализация второй цели стрессовой стимуляции симпатико-адреналовой системы — увеличение кровоснабжения мозга и миокарда — происходит путем усиления и учащения сердечных сокращений, а также спазма артериол всех органов и тканей под действием катехоламинов. Этот спазм ограничивает кровоснабжение большинства органов, но мозг и миокард кровоснабжаются в избытке, поскольку на их артериолы катехоламины не действуют.
Если такое обкрадывание второстепенных структур продолжается кратковременно, то оно физиологически оправдано: в условиях внезапной агрессии важнее, чтобы центры выжили и могли бы управлять пусть даже полуголодными, но все же функционирующими органами. Но распределение продукции — дело тонкое, и если производители энергии и необходимых веществ слишком долго остаются голодными, это в конце концов сказывается и на центральных структурах. Любое стрессовое состояние, в том числе операционное, рано или поздно имеет такой финал, если не была предпринята коррекция в ходе его развития.
Второй этап стресса — поражение тканей. Вызванный катехоламинами спазм артериол, предназначенный для централизации кровотока, замедляет капиллярный кровоток в тканях, но кровоток через артериовенозные анастомозы возрастает. Благодаря этому периферическое сопротивление повышается не слишком резко, а венозный возврат крови к сердцу в начале стрессовой реакции оказывается достаточным.
Однако вскоре возникают реологические расстройства кровотока, связанные с его замедлением в капиллярных системах. Отмечаются агрегация клеток крови, ее секвестрация в капиллярных системах, вследствие чего: 1) возникает гиповолемия, усиливающая реологические расстройства; 2) ишемия различных органов и тканей, где произошла секвестрация, нарушает их функцию; 3) развиваются метаболический ацидоз, электролитные нарушения, образуются биологически агрессивные метаболиты, проникающие в общий кровоток через еще функционирующие сосудистые пути; 4) микроагрегаты клеток крови дают начало синдрому РВС, который в зависимости от состояния других систем организма может вести к ишемическому микротромбозу органов и тканей, коагулопатическому кровотечению.
Одним из первых органов, которые поражаются в результате реологических расстройств крови вследствие гиперкатехоламинемии, являются легкие.
Дыхательная недостаточность вносит свой вклад в нарастающее ухудшение метаболизма.
Нарушение метаболизма не только ведет к изменению КОС и электролитного равновесия, но и поражает реакции биологического окисления, которые первыми включаются в стрессовое состояние, чтобы увеличить продукцию энергии. Пока ткани получают достаточное количество кислорода, образование энергии идет по первому — второму пути (Эмбдена — Мейергофа — Кребса) с продукцией 38 молекул АТФ из 1 молекулы глюкозы. Однако ишемия тканей, дыхательная недостаточность сокращают поступление кислорода в ткани и клетки, и образование энергии останавливается на рубеже, с которого начинается аэробный цикл Кребса. Появляется гипоксический избыток лактата, усиливается метаболический ацидоз, сокращается производство энергии, так как на этом пути биологического окисления образуются лишь 2 молекулы АТФ. По избытку лактата можно даже в какой-то мере приближенно судить о тяжести стресса.
Избыток Н+ способствует выходу из клеток К+ и до тех пор, пока не страдают почки, они удаляют из организма избыток внеклеточного калия. Чем более выражен операционный стресс, тем большей степени достигает гипокалиемия.
Электролитный баланс существенно зависит от уровней антидиуретического гормона гипофиза и альдостерона, которые включаются не только как первичная стрессовая реакция (см. выше), но и как ответ на гиповолемию, возникающую на втором этапе операционного стресса. Диурез сокращается, тканевая гипергидратация, гипокалиемия и гипернатриемия усиливаются.
Как уже отмечалось, в ходе стрессовой реакции фосфолипидный метаболизм под действием катехоламинов резко усиливается, чтобы увеличить производство энергии из ненасыщенных жирных кислот. В связи с этим возникает опасный побочный эффект — меняются свойства клеточных мембран, потому что их основу составляют фосфолипиды. Вместе с сокращением содержания фосфолипидов нарушается и уровень холестерина, который участвует в поддержании целостности, проницаемости и функциональной активности мембран. Течение операционного стресса сопровождается морфологическим и функциональным поражением клеточных мембран, вследствие чего меняется ультрамикроструктура органов и снижаются их функциональные возможности.
Видимо, в первую очередь в этот процесс вовлекаются легкие, потому что поражение фосфолипидов при стрессе сказывается не только на их клеточных мембранах, но и на состоянии сурфактантной системы, основу которой составляет фосфолипиддипальмитоловый лецитин. Из-за этого страдает растяжимость легких, увеличивается их проницаемость, нарастает интерстициальный отек.
Третий этап стресса — функциональные следствия
Рассмотрение первых двух этапов стрессовых реакций при оперативном вмешательстве позволяет сделать заключение, что они ведут к поражению всех жизненно важных функций организма.
Гемодинамические расстройства
Гиповолемия вызывает ишемию всех органов с генерализованными расстройствами микроциркуляции и метаболизма — гипокалиемией, метаболическим ацидозом, осмолярными расстройствами и др. О расстройствах микроциркуляторного кровотока при стрессе свидетельствует увеличение в 2—3 раза лимфотока по грудному лимфатическому протоку — главному коллектору лимфы.
В связи с гиповолемией снижаются венозный возврат и сердечный выброс, возникают артериальная и венозная гипотензия В дальнейшем из-за метаболических расстройств может присоединиться миокардиальная недостаточность, еще больше снижается сердечный выброс.
Дыхательные расстройства
Операционный стресс ведет к дыхаельной недостаточности, резистентной к обычным режимам кислородной терапии. Это происходит в связи с возникновением респираторного дистресс-синдрома взрослых (РДСВ), который в послеоперационном периоде может послужить основой крайне тяжелой дыхательной недостаточности.
В результате операционного стресса возможно развитие стрессовой паралитической непроходимости пищеварительного тракта, возникающей вследствие преобладания адренергической стимуляции (катехоламины) над холинергической, которая управляет движениями кишечника. Паралитическая непроходимость ухудшает условия для вентиляции легких и ведет к выраженным расстройствам метаболизма, в том числе в связи с нарушением печеночного кровотока. Стрессовое поражение пищеварительного тракта заключается также в возникновении эрозий и язв слизистой.
Нарушение функций печени и почек
Страницы: 1, 2, 3