Рефераты. Прибор для измерения скорости кровотока

В цифровом спектроанализаторе формирование спектральных составляющих сигнала выполняется цифровым способом на основе реализации эффективного в вычислительном отношении алгоритма быстрого преобразования Фурье (БПФ). Перед выполнением спектрального анализа сигнала в цифровой форме осуществляется преобразование выходного сигнала приемного тракта в последовательность цифровых кодов с помощью аналого-цифрового преобразователя. Далее отсчеты сигнала накапливаются в буферной памяти.

После накопления последовательности отсчетов сигнала выполняется вычисление спектра сигнала с помощью алгоритма БПФ.

Современная доплеровская система со спектральным анализом выполняет следующие основные функции:

формирование зондирующих сигналов;

прием эхо-сигнала и выделение доплеровских смещений;

формирование звуковых сигналов прямого и обратного кровотока;

формирование доплерограммы и отображение ее в реально масштабе времени на экране монитора;

вычисление параметров и индексов кровотока.

Реализацию вышеперечисленных функций рассмотрим на примере доплеровской системы "Сономед-300", блок-схема которой приведена на рис.3.

Доплеровская система включает в себя: ультразвуковой датчик импульсного излучения 2МГц; ультразвуковые датчики непрерывного излучения 4 и 8 МГц; передатчик; приемник; цифровой спектроанализатор; управляющий компьютер (совместимый с персональным РС).

Рис.3. Блок-схема доплеровского прибора со спектральным анализом.


Передатчик генерирует электрический сигнал возбуждения датчиков. В датчике электрический сигнал преобразуется в механические колебания пьезоэлектрической пластины, которые и передаются на тело пациента.

Эхо-сигналы от внутренних структур тканей, поступающие на датчик, преобразуются с помощью пьезоэлектрической пластины датчика в электрические колебания.

Приемник путем смешения сигнала возбуждения с эхо-сигналом и последующей фильтрации выделяет доплеровский сигнал кровотока, который поступает затем на цифровой спектроанализатор. После дополнительной обработки с помощью фазосдвигающих цепей, выполняющих разделение сигналов прямого и обратного кровотока, и усиления этот сигнал выдается на громкоговорители для звукового воспроизведения.

В цифровом спектроанализаторе выполняется преобразование доплеровского сигнала в цифровую форму, после чего производится вычисление спектра доплеровского сигнала.

Сформированные спектральные линии накапливаются в видеопамяти управляющего компьютера и выдаются на экран монитора. Кроме формирования изображения управляющий компьютер обеспечивает интерфейс с пользователем для создания режимов работы прибора, выполняет расчет параметров кровотока, накопление результатов измерений на магнитных носителях, регистрацию результатов с помощью внешних печатающих устройств.


1.3.3 Электроакустические принципы построения доплеровских приборов

Основные критерии оценки доплеровской информации.

Ультразвуковой доплеровский прибор представляет собой локационное устройство, принцип работы которого заключается в излучении зондирующих сигналов в тело пациента, приеме и обработке эхо-сигналов, отраженных от движущихся элементов кровотока в сосудах. Функционирование доплеровского прибора аналогично работе любого другого локационного устройства движущихся объектов для самых различных применений.

Особенность ультразвукового прибора состоит в использовании в качестве зондирующего сигнала механических колебаний, передаваемых в тело человека.

Возбуждение ультразвуковых колебаний и прием эхо-сигналов при работе доплеровского прибора выполняется датчиком, в состав которого входит один или несколько ультразвуковых преобразователей. Ультразвуковой преобразователь представляет собой пластину из пьезоэлектрического материала и предназначен для преобразования поступающих на него электрических сигналов в ультразвуковые волны при излучении зондирующего сигнала, и, соответственно, для обратного преобразования ультразвуковых волн в электрические сигналы в процессе приема эхо-сигналов.

Состояние кровотока оценивают как по качественным, так и по количественным характеристикам.

К качественным показателям относят: характер звукового доплеровского сигнала; форму доплерограммы; распределение частот в доплерограмме; направление кровотока.

Вид доплерограммы позволяет более точно оценить состояние кровотока, поскольку при нарушениях кровотока форма спектра претерпевает существенные изменения.

Количественная оценка кровотока производится как на основании непосредственно измеряемых параметров, так и с помощью рассчитываемых на их основе индексов. К непосредственно измеряемым параметрам кровотока относятся: максимальная систолическая скорость; скорость в конце диастолического цикла; средняя скорость за один сердечных цикл.

Однако необходимо помнить, что указанные параметры зависят от угла наклона датчика по отношению к направлению кровотока. На практике наклон датчика выставляют таким образом, чтобы получить максимальную насыщенность изображения спектра, которая достигается при значении угла около 45°.

Чтобы получить количественные параметры кровотока, не зависящие от угла наклона датчика, широко применяют специальные индексы: индекс сопротивления, систоло-диастолический индекс, индекс пульсации, процент стеноза.

Эксплуатационные параметры доплеровской системы.

Эксплуатационные параметры доплеровской системы определяются способами реализации основных этапов формирования, обработки и отображения сигналов.

Качество эксплуатационных характеристик ультразвуковой доплеровской системы непосредственно связано с понятием пространственного разрешения, разрешения по времени и скорости (доплеровской частоте).

Параметры зондирующих сигналов и способы обработки эхо-сигналов определяют следующие характеристики доплеровской системы: пространственное разрешение, глубина зондирования, вид доплерограммы.

Для получения качественной диагностической информации в доплеровской системе предусматривают управление параметрами тракта формирования зондирующего сигнала, приемного тракта и тракта формирования доплерограммы.

К основным параметрам доплеровской системы, которые могут изменяться оператором, относят: параметры зондирующего сигнала - тип излучения, мощность, частота и длительность излучения; параметры обработки эхо-сигналов - усиление, характеристики фильтров шумов и мешающих отражений; параметры формирования доплерограммы.


1.4 Ограничения доплеровского метода


Каждый из двух используемый в доплеровской системе режимов излучения имеет свои преимущества и недостатки, которые необходимо учитывать для выбора оптимального режима работы с системой.

Преимущества использования непрерывного излучения:

1) качественное выделение сигналов с малым уровнем шумов;

2) приемлемые характеристики, получаемые при небольшой мощности излучения;

3) отсутствие ограничений по величине измеряемой скорости кровотока.

Ограничения при использовании непрерывного излучения:

1) эхо-сигнал выделяется со всей глубины в пределах зоны чувствительности, следовательно, невозможно разделить сигналы от разных сосудов, попадающих в зону чувствительности прибора, а также невозможно оценить диаметр сосуда;

2) минимально возможная измеряемая доплеровская скорость ограничивается фильтром высоких частот, который используют для подавления мощных сигналов от медленно движущихся стенок сосудов; недостаточное подавление этих сигналов приводит к перегрузке приемного тракта;

3) при установленных нормах на безопасную для пациента мощность излучения кость является непреодолимым препятствием распространению ультразвука, что делает невозможным проведение транскраниальных исследований.

Преимущества использования импульсного излучения:

1) возможна точная установка измерительного объема на выбранной глубине, что делает возможным разделение сигналов от разных сосудов вдоль направления излучения, и в частности сигналов от близкорасположенных сосудов с разными направлениями кровотока;

2) для излучения и приема используют одну пьезоэлектрическую пластину, следовательно, ультразвуковой луч может быть более узким, чем в случае непрерывного излучения с применением разделенного датчика.

Ограничения при использовании импульсного излучения:

1) наименьшая измеряемая доплеровская частота определяется характеристикой фильтра высоких частот, используемого для подавления мощных сигналов от медленно движущихся стенок сосудов;

2) максимальная измеряемая скорость определяется частотой повторения импульсов излучения.

Если скорость движения элемента крови превысит некоторое граничное значение, определяемое частотой повторения зондирующих импульсов, то за счет эффекта наложения частот соответствующее доплеровское смещение будет переноситься в область низких частот, что соответствует малой скорости движения. Иными словами, возникает неоднозначность при измерении скорости кровотока.

Также возможно неоднозначное определение глубины локализации. Глубина исследуемого сосуда определяется только в режиме импульсного излучения по величине временной задержки между моментом излучения и моментом приходы эхо-сигнала. В действительности имеет место неоднозначность измерения дальности, обусловленная приходом в заданное время одновременно с эхо-сигналом последнего излученного импульса от исследуемого элемента ткани эхо-сигналом предыдущих излученных импульсов от более глубоких слоев ткани. Однако вследствие затухания от более глубоких слоев значительно ослаблены, и при малой частоте повторения импульсов их влиянием можно пренебречь. Если же частота повторения достаточно высока, то доплеровская система будет воспринимать эхо-сигналы одновременно от двух и более участков ткани по глубине. В пределе, при увеличении частоты повторения импульсов, импульсный режим по характеристикам приближается к непрерывному режиму излучения; при этом теряется понятие глубины, но нет ограничений на максимальную скорость кровотока.

Основное преимущество импульсной доплеровской системы по сравнению с системой непрерывного излучения - это точная локализация измерительного объема по глубине. При этом, чем более короткий импульс излучения используют, тем большую точность определения глубины достигают. При этом возможность локализации измерительного объема увеличивается, возможность точного измерения скорости уменьшается. Таким образом, становится понятным, что каждый из используемых в доплеровской системе режимов излучения имеет свои преимущества и недостатки, которые необходимо учитывать для выбора оптимального режима работы с системой.

Устранить отмеченные принципиальные ограничения возможно только при совмещении режимов двухмерного сканирования (В-режим) с одновременным получением доплеровской информации (D-режим). Эти системы рассмотрим в следующем пункте дипломного проекта.

 

1.5 Доплеровские системы с двухмерной визуализацией


Существует два подхода к комбинированию доплеровской информации и информации двухмерного сканирования. Первый состоит в получении полутонового двухмерного изображения (В-режим) в реальном времени, определении зоны интереса и направлении в эту область одномерного доплеровского излучения. Такой подход известен как дуплексный режим.

Второй метод предусматривает формирование изображения потоков на основе оценки доплеровской информации в каждом из элементов выбранной двухмерной зоны интереса с одновременным цветным кодированием получаемой информации в зависимости от направления потока. Данный поток получил название "метод цветового доплеровского картирования" - ЦДК. Доплеровская информация, получаемая при этом методе, как правило, воспроизводится на экране прибора совместно с двухмерным полутоновым изображением для совместной оценки морфологии исследуемого сосуда, геометрии потоков и их функциональных характеристик. Одновременное формирование в режиме реального времени полутонового двухмерного изображения, информации ЦДК в выбранной двухмерной области и спектограммы потока в зоне установленного строба получило название триплексного режима.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.