Рефераты. Порушення метаболізму триптофану

Припускають, що ця амінокислота стимулює секрецію інсуліну, що у свою чергу активізує синтез жирних кислот у печінці. Особливе значення ця амінокислота має у фармакології, де вона і її похідні застосовуються як інгредієнти багатьох лікарських засобів.

При таких важких захворюваннях, як рак, туберкульоз, діабет триптофан сприяє нормальному функціонуванню різних систем організму. Недолік його в людини і тварин веде до розвитку пелагри, поразці зубів, помутнінню роговиці око, катаракти.

Особливо під час вагітності підвищується необхідність споживання жіночим організмом у таких амінокислотах як: триптофан і Лізин, а для грудних дітей - триптофан і ізолейцин. Сам же амінокислотний склад грудного молока може бути представлений унікальним складом амінокислот: триптофан, метіонін, гістидин, лейцин і цистин, що забезпечує інтенсивні процеси росту і розвитку дитини. Дослідження останнього років дозволили виявити в грудному молоці ще й амінокислоту таурин, що надається велике значення як факторові модулятора росту, що визначає структурну і функціональну цілісність клітинних мембран [10].

Триптофан як попередник серотоніну створює антидепресантну дію на організм, сприяє зняттю гіперактивності, нав'язливих станів у дітей, тривожності перед менструацією в жінок, фіброміалгії і синдрому хронічної утоми, сприяє гарному засипанню і нормальному снові в як у ранньому віці, так особливості в літньому.

Необхідно відзначити ще один цікавий факт, що значне збільшення потреби організму в незамінних амінокислотах спостерігається після великих утрат крові, опіків, а також під час інших процесів, супроводжуваних регенерацією тканин. Триптофан також бере значну участь у виправленні помилок процесу подвоєння ДНК. Разом з Лізинім, вони утворять трипептид Лізин-триптофан-Лізин, що виправляє помилки, що виникають при подвоєнні ДНК. Ця характеристика триптофану має першорядне значення при вагітності і для запобігання утворення ракових кліток.

При поповненні запасів триптофану мозком краще регулюється зміст солі в організмі. Підвищується поріг болючої чутливості. Вироблення кислоти в шлунку знаходяться під строгим контролем. Кров'яний тиск нормалізується, що уможливлює повноцінне функціонування всього організму: бруньок, мозку, печінки, легень, травної системи і суглобів.

РОЗДІЛ 3. Порушення метаболізму триптофану


Триптофан унаслідок різноманіття зв'язаних з ним метаболічних реакцій і продуктів був однієї з перших амінокислот, що були віднесені до незамінного. Дослідження, проведені на мутантах Neurospora і на бактеріях Pseudomonas , а також виділення метаболітів триптофан а із сечі, надали неоціненну допомогу в з'ясуванні деталей метаболізму триптофанy [16].

При введенні з їжею [14C]-триптофану велика частина ізотопу включається до складу білків, однак істотна частина виявляється в сечі в складі різних катаболітів. Атоми вуглецю бічного ланцюга й ароматичного кільця можуть цілком переходити в амфіболічні інтермедіати при трансформації триптофану по кінуренін - антранілатному шляхи ( Катаболізм амінокислот, що утворять ацетил-Co: метаболическая карта ), що грає важливу роль у деградації триптофану й у його перетворенні в нікотинамід .

Триптофаноксигеназа (триптофанпіролаза) каталізує розкриття індольного кільця з включенням двох атомів молекулярного кисню в що утвориться N- формілкінуренін. Даний фермент є металлопротеїном, що містить залізопорфірин; синтез його в печінці індукується адренокортикостероїдами і триптофаном. Значна частина синтезованого ферменту знаходиться в латентній формі і вимагає активації. Триптофан стабілізує оксигеназу стосовно протеолітичних ферментів. Вона інгібується за принципом зворотного зв'язку похідними нікотинової кислоти [16].

Гідролітичне видалення формільної групи N- формілкинуренін а каталізується в печінці ссавців кінуренінформілазой. Гідроліз приводить до включення атома 18O у форміат, що утвориться. Фермент також каталізує аналогічні реакції з різними арилформіламінами.

Продуктом реакції, каталізованої кинуренінформілазой, є кінуренін. Він може бути дезамінований у результаті реакції переамінування з переносом аміногрупи бічного ланцюга на альфа-кетоглутарат. Утворені при цьому кетопохідні проходять спонтанну циклізацію, перетворюючись в кінуренову кислоту. Ця сполука є побічним продуктом катаболізму кінуреніну і не відноситься до катаболітів, що утвориться на головному шляху.

Подальший хід метаболізму кінуреніну включає його перетворення в 3- гідроксикінуренін і далі в 3- гідроксиантранілат. Гідроксилювання відбувається при участі молекулярного кисню і здійснюється в NADPH-залежній реакції гідроксилювання, аналогічної реакції гідроксилювання фенілаланину.

Кинуренін і гідроксикінуренін перетворюються в гідроксиантранілат при участі ферменту, що піридоксальфосфат містить кінуренінази. Недолік вітаміну B6, приводить до часткової втрати здатності до катаболізму цих кінуренінових похідних; у непечінкових тканинах вони перетворюються в ксантуренат . Цей у нормі відсутній катаболіт з'являється в сечі людини, мавп і пацюків при недостатньому змісті в їжі вітаміну B6. У цих умовах уведення надлишкових кількостей триптофану приводить до екскреції ксантуренату із сечею [6].

У багатьох тварин перетворення триптофану в нікотинову кислоту є необов'язковим надходження цього вітаміну з їжею. У пацюків, кроликів, собак і свиней харчовий триптофан може цілком замінити цей вітамін; у людини, а також у ряду тварин надлишкове споживання триптофану з їжею підвищує екскрецію із сечею похідних нікотинової кислоти (наприклад, N- метилнікотинамід а). При недостатності вітаміну B6 порушення утворення з триптофану нікотинової кислоти може привести до порушення синтезу піридинових нуклеотидів, NAD + і NADP +. Якщо ввести в організм достатня кількість нікотинової кислоти, нормальний синтез піридинових нуклеотидів відновляється навіть під час відсутності вітаміну B6.

Метаболічні порушення катаболізму триптофану є хвороба Хартнупа, спадкоємне порушення метаболізму триптофану, характеризується появою висипки на шкірі, як при пелагрі, що перемежовується мозочкова атаксією і розумовою відсталістю. Сеча хворих містить значно підвищені кількості індолацетат а ( альфа-N-[індол-3-ацетил]глутамин а) і триптофану.

Порушення обміну триптофану. Основний шлях метаболізму триптофану приводить до синтезу аміду нікотинової кислоти, що грає дуже важливу роль у життєдіяльності організму, будучи простетичною групою ряду окисних ферментів - нікотинамідаденіндинуклеотиду (НАД) і його відновленої форми нікотинамідаденін-динуклеотидфосфата (НАДФ). Тому при недостатності нікотинової кислоти і її аміду порушуються багато обмінних реакцій, а при значному дефіциті цих речовин розвивається пелагра.

Порушення обміну триптофану може проявитися також у зміні кількості утвореного з його серотоніну [23].

Ураження нирок викликається підвищеною екскрецією метаболітів триптофану. Синдром Хартнупа - уроджене спадкоємне захворювання, обумовлене порушенням транспорту триптофану в кишечнику, що характеризується пелагроподібним дерматозом, періодичними приступами мозочкової атаксії, гіпераміноацидурією і підвищеною нирковою екскрецією індольних сполук.

Успадковується за аутосомно-рецесивною ознакою. Передбачається порушення транспорту триптофану на рівні кліток слизуватої оболонки кишечнику і проксимального відділу ниркових канальців. Це приводить до підвищеного виділення триптофану із сечею і зниженню абсорбції його в кишечнику. Нагромадження триптофану в кишечнику сприяє бактеріальному його розкладанню й утворенню великої кількості індольних сполук, що всмоктуються в кров і посилено виділяються із сечею. Підвищення змісту цих з'єднань у крові, імовірно, обумовлює підвищену чутливість шкірних покривів до дії сонячних променів. Виведення ж значної кількості індикану бруньками викликає в зв'язку з ушкодженням проксимальних канальцев гіпераміноацидурію.

Найбільше характерно пелагроподобне ураження шкіри, що характеризується появою на відкритих ділянках тіла гіперемії, лущення. Ці зміни підсилюються в літню пору під впливом сонячних променів. Поза загостренням на шкірі особи, найчастіше в області носа, виявляються атрофічні ділянки як результат світлової травми. Тому рекомендується уникати інсоляції.

Лікування. Показано вітаміни В6, РР і B1. У періоди загострення - обмеження білка, проведення цукрово-фруктових днів, антибактеріальні препарати для зменшення утворення індольних похідних за рахунок бактеріального розкладання триптофану.

Синдром Тада. Вперше описаний К. Tada і соавт. у 1963 р. В основі захворювання лежить недостатність ферменту триптофанпіролідази. Клінічно виявляється подібність із синдромом Хартнапа, відрізняється від нього більшою виразністю поразки ЦНС і нанізмом. Лабораторні дані також ідентичні, за винятком рівня триптофану в крові, що при даному синдромі завжди підвищений. Мається кілька інших варіантів порушення обміну триптофану.


ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА


РОЗДІЛ 4 Проба на ксантуренову кислоту


Властивість ксантуренової кислоти давати яскраво-зелене забарвлення з іонами заліза в розчині бікарбонату покладено в основу методу кількісного визначення її в сечі. Виділення ксантуренової кислоти із сечею в здорової людини в середньому складає до 15 мг у добу. При недостатності вітаміну В6, а також при деяких захворюваннях, що супроводжуються порушенням обміну вітаміну В6, кількість виділюваної ксантуренової кислоти після навантаження 10 г триптофану підвищується і складає 10-200 мг. Однак у деяких випадках, незважаючи на недостатність вітаміну В6, ксантуренова кислота не виділяється [27].

При розгляді схеми перетворень триптофану ясно, що недостатність вітаміну В6 зв'язана зі зниженням активності кінуренінази, що приводить до нагромадження субстратів цього ферменту- кінуреніну і 3-оксикинуренина. Ці з'єднання є також субстратами ферменту кінуренінтрансамінази, що приймають участь в утворенні ксантуренової кислоти. Оскільки кінуренінтрансаміназа є також пиридоксалевим ферментом, можна було очікувати зниження її активності при недостатності вітаміну В6. Однак спорідненість піридоксальфосфата до апоферменту в кінуренінтрансаміназі значно вище, ніж у випадку з кінуреніназою, тому при розвитку недостатності вітаміну В6 у першу чергу знижується активність кінуренінази, а утворення ксантуренової кислоти спочатку навіть трохи підвищено внаслідок значного підвищення концентрації в тканинах 3-оксикинуренина. У пацюків активність кінуренінази в печінці в 4 рази вище, ніж у нирках, а кінуренінтрансаміназа зосереджена головним чином у печінці. Якщо врахувати, що при розвитку авітамінозу запас вітаміну В6 знижується спочатку в печінці, то це викликає в першу чергу зниження активності кінуренінази. Показано також, що кінуреніназа і трансаміназа кінуреніна розрізняються по внутрішньоклітинній локалізації: кінуреніназа знаходиться головним чином у розчинній частині клітки, тоді як велика частина трансамінази зв'язана з мітохондріями. Виснаження запасів вітаміну В6 в організмі при далеко зайшов авітамінозі приводить також до зниження активності кінуренінтрансамінази, що супроводжується зменшенням виділення ксантуреновой кислоти [10].

Дані, отримані в останні роки, показали, що при недостатності вітаміну В6 підвищене виділення із сечею щавлевої кислоти. Виявилося, що в цьому випадку джерелом щавлевої кислоти є гліоксилова кислота - продукт перетворення гліцину, утворення якої значно підвищується при недостатності вітаміну В6.

Відомо, що солі щавлевої кислоти відкладаються в бруньках і сечоводах, утворити оксалатні камені. Кількісний вимір виділення щавлевої кислоти із сечею застосовується як один з непрямих критеріїв для оцінки забезпеченості організму вітаміном В6. Однією з умов, що запобігають відкладення солей щавлевої кислоти, вважається постачання організму достатніми кількостями вітаміну В6.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.