Рефераты. Печёночная недостаточность p> Печень – место синтеза альбуминов, фибриногена, протромбина, проакцелерина, проконвертина, основной массы альфа и бета – глобулинов, гепарина. Синтез белков осуществляется в гепатоцитах рибосомами.
Собственные белки и ферменты печеночных клеток синтезируются на свободных рибосомах и полисомах гиалоплазмы гепатоцитов, не связанных с мембранами эндоплазматической сети. Синтез белков «на экспорт» осуществляется рибосомами зернистой эндоплазматической сети.

Большинство заболеваний печени с тяжелыми повреждениями паренхимы сопровождаются снижением белково-синтетической функции гепатоцитов в результате угнетения каталитической активности мембраносвязанных ферментов и ферментативной активности субклеточных структур. Нарушается контакт рибосом с эндоплазматическим ретикулумом вследствие редукции мембран и уменьшения их белкового компонента.

Снижение белково-синтетической функции печени имеет следующие проявления:

1)Гипоальбуминемия, вследствие которой развивается гипоонкия, сопровождающаяся периферическими отеками, асцитом, гипотонией. Поскольку альбумины выполняют в организме антитоксическую (связывают метаболиты и ксенобиотики) и транспортную (связываясь с жирами, предотвращают возможность жировой эмболии, связываясь с билирубином, лишают его токсических свойств) функции, то токсичность эндо и экзотоксинов при гипоальбуминемии проявляется даже при их минимальной концентрации в плазме. Кроме того, известно, что альбумины участвуют в поддержании коллоидного состояния глобулинов крови, и последние легче выпадают в осадок
(на этом основана проба Вельтмана, тимоловая проба).
2) Нарушение синтеза прокоагулянтов ведет к кровоточивости (этому так же может способствовать нарушение образования желчи, что вызывает затруднение всасывания жирорастворимого витамина К).
3) Снижение продукции транспортных белков ( трансферрина, переносящего ионы железа, церулоплазмина, переносящего ионы меди, цианокобаламина – ионы кобальта, транскортина, связывающего глюкокортикоиды и др.)

Расщепление белков до образования мочевины так же осуществляется в печени.

В гепатоцитах активно идут процессы утилизации аминокислот: их дезаминирование, переаминирование (трансаминирование) и декарбоксилирование. При значительных поражениях паренхимы, особенно при массивных никрозах, повышается уровень свободных аминокислот, остаточного азота в крови, при этом значительная часть аминокислот выделяется с мочой.

Нарушение реакций дезаминирования при патологи печени сказывается неблагополучно на состоянии организма, поскольку: а) происходит усиленное выведение аминокислот с мочой, то есть организм бесполезно теряет необходимые для его жизнедеятельности вещества; б) возрастает интенсивность декарбоксилирования аминокислот, что ведет к образованию биогенных аминов , например, гистамина; в) усиливается интенсивность так называемых альтернативных путей их обмена, в ходе которых возможно образование токсических продуктов и даже обладающих канцерогенными свойствами ( некоторые продукты нарушенного обмена триптофана).

Для характеристики аминокислотного спектра крови определяют аминокислотное соотношение:

Вал + Лей + Изолей

_________________ = 3,0 – 3,5

Фен + Тир

При печеночной недостаточности это соотношение снижается.

Печень осуществляет катаболизм нуклеопротеидов с их расщеплением до аминокислот, пуриновых и пиримидиновых оснований. В печени последние превращаются в мочевую кислоту, выделяемую почками. Важно отметить, что конечные этапы катаболитических изменений белковых тел в печени одновременно представляют ее детоксицирующую функцию.

Нарушение углеводного обмена

Печень играет центральную роль в многочисленных реакциях промежуточного обмена углеводов. Среди них особенно важны описанные ниже процессы.
1) Превращение галактозы в глюкозу. Галактоза поступает в организм в составе молочного сахара. В печени происходит ее превращение в глюкозо-1- фосфат (Г-1-Ф). При нарушении функции печени способность организма использовать галактозу снижается (на этом основана функциональная проба печени с нагрузкой галактозой).
2) Превращение фруктозы в глюкозу Печень превращает фруктозу во фруктозо-1- фосфат (Ф-1-Ф) с помощью содержащейся в ней специфической фруктокиназы при участии АТФ. Ф-1-Ф расщепляется в печени альдолазой В.. Часть фруктозы под действием гексокиназы превращается во фруктозо-6-фосфат, промежуточный продукт основного пути распада глюкозы. Под действием глюкозофосфатизомеразы фруктозо-6-фосфат превращается в глюкозо-6-фосфат

( Г-6-Ф).
3) Синтез и распад гликогена Гликоген синтезируется из активированной глюкозы (Г-6-Ф). Печень может синтезировать гликоген и из других продуктов углеводного обмена, например, из молочной кислоты. Распад гликогена в печени происходит и гидролитически, и фосфоролитически. Под действием фосфорилазы образуется Г-1-Ф, который превращается в Г-6-Ф, последний включается в различные метаболитичекие процессы. Печень служит единственным поставщиком глюкозы в кровь, так как только под влиянием печеночной микросомальной Г-6-фосфатазы из Г-6-Ф освобождается глюкоза.

Таким образом, под влиянием обратимых реакций распада и синтеза гликогена регулируется количество глюкозы в соответствии с потребностями организма. Уровень гликогена регулируется гормональными факторами: АКТГ, глюкокортикоиды и инулин повышают содержание гликогена в печени; адреналин, глюкагон, СТГ и тироксин - понижают.
4) Глюконеогенез. Глюкоза может синтезироваться из различных соединений неуглеводной природы, таких как лактат, глицерин, некоторые метаболиты цитратного цикла и глюкопластические аминокислоты (глицин, аланин, серин, треонин, валин, аспарагиновая и глютаминовая кислоты, аргинин, пролин, гистидин, оксипролин). Глюконеогенез связывает между собой обмен белков и углеводов и обеспечивает жизнедеятельность при недостатке углеводов в пище. При печеночной недостаточности в результате угнетения глюконеогенеза, снижения содержания гликогена в печени, угнетения реакции гепатоцитов на глюкагон, увеличения содержания в крови инсулина

(вследствие уменьшения его инактивации печенью) возникает гипогликемия.

Таким образом, можно выделить следующие причины гипогликемии при печеночной недостаточности: а) угнетение глюконеогенеза всей печенью из-за снижения числа функционально интактных гепатоцитов; б) падение содержания гликогена в печени; в) угнетение реакции гепатоцитов на эффект глюкагона как стимулятора глюконеогенеза; г) рост содержания в крови инсулина как следствие падения его инактивации печенью.
5) Образование глюкуроновой кислоты. С обменом углеводов связан синтез глюкуроновой кислоты, необходимой для конъюгации плохо растворимых веществ (фенолы, билирубин и др.) и образования смешанных полисахаридов

(гиалуроновая кислота, гепарин и др.)

В основе нарушений обмена углеводов при болезнях печени лежат повреждения митохондрий, которые ведут к снижению окислительного фосфорилирования. Вторично страдают функции печени, требующие расхода энергии, - синтез белка, эстерификация стероидных гормонов. Дефицит углеводов приводит также к усилению анаэробного гликолиза, вследствие чего в клетках накапливаются кислые метаболиты, вызывающие снижение рН.
Следствием этого являются разрушение лизосомальных мембран и выход в цитоплазму кислых гидролаз, вызывающих некроз гепатоцитов. Нарушение углеводного обмена при патологии печени проявляются гипогликемией натощак вследствие истощения депо гликогена в печени, снижением способности организма поддерживать нормальный уровень глюкозы в крови.

Нарушение липидного обмена

Печень играет ведущую роль в обмене липидных веществ – нейтральных жиров, жирных кислот, фосфолипидов, холестерина. Участие печени в обмене липидов тесно связано с ее желчевыделительной функцией: желчь активно участвует в ассимиляции жиров в кишечнике. При нарушении образования или выделения желчи жиры в повышенном количестве выделяются с калом. Желчь усиливает действие панкреатической липазы и вместе с рядом других веществ участвует в образовании хиломикронов. Гепатоциты с помощью микроворсинок непосредственно захватывают липиды из крови. В печени осуществляются следующие процессы обмена липидов: окисление триглицеридов, образование ацетоновых тел, синтез триглицеридов (ТГ) и фосфолипидов, синтез липопротеидов, холестерина.

Гидролиз ТГ на глицерин и жирные кислоты происходит под действием внутрипеченочных липолитических ферментов. Печень является центральным местом метаболизма жирных кислот. В ней происходит синтез жирных кислот и их расщепление до ацетил-кофермента А, а так же образование кетоновых тел, насыщение ненасыщенных жирных кислот и их включение в ресинтез нейтральных жиров и ФЛ с последующим выведением в кровь и желчь.
Катаболизм жирных кислот осуществляется путем бета - окисления, основной реакцией которого является активирование жирной кислоты с участием кофермента А и АТФ. Освобождающийся ацетил-кофермент А подвергается полному окислению в митохондриях, в результате чего клетки обеспечиваются энергией.

Кетоновые тела (ацетоуксусная, бета – оксимасляная кислоты и ацетон) образуются исключительно в печени. Возникающий в патологических условиях кетоз связан с диссоциацией кетогенеза в печени и утилизацией кетоновых тел в других органах. Из жирных кислот, глицерина, фосфорной кислоты, холина и других оснований печень синтезирует важнейшие составные части клеточных мембран – различные ФЛ. Синтез нейтральных жиров и фосфолипидов связан главным образом с митохондриями, а также с гладкой эндоплазматической сетью.

Синтез холестерина в основном происходит в печени и кишечнике. Он представляет собой важную составную часть плазмы крови и используется для синтеза кортикостероидных гормонов, витамина Д, желчных кислот и липидных структур мембран. Основная масса холестерина синтезируется гладкой эндоплазматической сетью. Уровень холестерина поддерживается постоянным в результате синтеза, катаболизма и выведения избыточного количества с желчью в кишечник; пятая часть его выделяется с калом, а большая часть всасывается вновь, обеспечивая печеночно-клеточную циркуляцию. Печеночные клетки полностью ответственны за удаление избыточного количества холестерина с желчью. Нарушение печеночно-клеточной циркуляции вследствие окклюзии желчевыводящих путей приводит к резкому возрастанию синтеза желчных кислот из холестерина.

Если гепатоцеллюлярные болезни снижают число нормальных гепатоцитов до определенного уровня, то падение синтеза холестерина в печени преобладает над снижением его экскреции в просвет кишечника таким образом, что в сыворотке крови падает концентрация холестерина.

Если внешние по отношению к печени системные растройства обмена веществ приводит к гиперхолистеринемии, то печень начинает выделять с желчью больше холестерина, и его концентрация в желчном пузыре растет.
Рост содержания холестерина в крови предрасполагает к формирования камней желчного пузыря.

В печени происходит синтез липопротеидов, особой транспортной формы ФЛ.

При повреждении гепатоцитов синтез ФЛ в них угнетается и накапливаются нейтральные липиды, что ведет к жировой дистрофии печени, при которой содержание ТГ может достигать 80% массы печени. В основе жирового перерождения печени лежат процессы, которые приводят к недостаточности окслительно-восстановительных реакций, что сопровождается снижением содержания АТФ в гепатоцитах, либо ведут к прямому повреждению структуры печеночных клеток.

Среди причин можно выделить следующие:

1) Нарушение кровоснабжения печени по системе печеночной артерии (при патологии сердца, анемиях, снижении ОЦК и т.д.);

2) Гипоксемии различного генеза;

3) Инфекционные, вирусные поражения гепатоцитов;

4) Действие токсических веществ (четыреххлористый углерод, фосфорорганические вещества: хлорофос, карбофос, и др.; хлороформ и пр.);

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.