Рефераты. Основи електрографії

U — різниця потенціалів у відносних одиницях; t — час.

Виявилося, що розраховані електрограми шлунків (рис. 4), а також еквіпотенціальні лінії на поверхні тіла близькі до тих же параметрів зовнісердечного поля, безпосередньо вимірюваного на поверхні тіла. Таким чином, у теорії багатодипольного еквівалентного електричного генератора серця вдається розраховувати власне електрокардіограми і пояснити механізм їх генеза на рівні електричної активності кліток міокарда.

На основі описаної моделі були розраховані електрограми шлунків, що містить вогнища ішемічної поразки. Було показано, що відомі з експериментів електрокардіографічні ознаки інфаркту міокарда й інших ішемічних поразок добре відтворюються на моделі. При цьому з'ясувалося, що зміни електрограми, що спостерігаються при інфаркті шлунків можуть відбуватися в результаті зниження потенціалу спокою м'язових кліток, збільшення часу деполяризації при генерації потенціалів дії, зменшення амплітуди і тривалості потенціалів дії і деяких інших зрушень в електричній активності кліток.

При роботі серця через мембрани кліток міокарда протікають іонні струми, зв'язані з генерацією потенціалів дії. Ці струми утворять складну, але скомпенсовану токову систему. Тому, якщо вимірювати потенціали полів цієї системи струмів у крапках, вилучених від серця на відстані, значно переважаючих розміри серця, то можна вважати, що це поле створюється деяким струмовим диполем. Іншими словами, у зазначеному випадку серце можна вважати токовим диполем.

В основі біофізичної інтерпретації лежить модель, запропонована Ейнтховеном - творцем електрокардіографії. Основними постулатами моделі Ейнтховена є:

1) Серце – це токовий диполь. Збуджена область міокарда заряджена негативно стосовно не збудженої області. Такий розподіл заряду еквівалентно дипольній системі зарядів, що, як було показано, можна розглядати як струмовий диполь і характеризувати моментом токового диполя (D), що часто називають інтегральним електричним вектором серця.

2) Диполь знаходиться в однорідному ізотропному провідному середовищі, що з достатньою точністю відноситься до тканин організму. Протягом серцевого циклу вектор дипольного токового моменту серця D міняється по величині і напрямку. Його початок прийнятий вважати нерухомим; він знаходиться в синатриальному синусному вузлі серця, а кінець описує складну просторову криву, проекція якої на фронтальну площину утворить за час серцевого циклу три петлі.

Ейнтховен запропонував вимірювати зміни потенціалів поля, зв'язаного з роботою серця, у наступних трьох крапках: кисть правої руки, кисть лівої руки, ліва стопа (крапки А, В и С на рис.5 відповідно). Таке розташування крапок реєстрації потенціалів зв'язано з найпростішою моделлю електричної активності серця, що розглядає серце як струмовий диполь, розташований у центрі правильного трикутника, вершинами якого є крапки А, В и С. Цей трикутник називається трикутником стандартних відведень. Региструємі різниці потенціалів між крапками А и В, А и С, а також В и С (Uав, Uас і UBC відповідно) називаються різностями потенціалів у першому, другому і третьому стандартних відведеннях відповідно.


Рис. 5. Схема відведень Ейнтховена.


У моделі Ейнтховена ці різниці потенціалів пропорційні величинам проекцій вектора дипольного моменту ( ), що моделюють серце, на відповідні сторони трикутника відведень, тобто UAB : UBC : UAC = DAB : DBC : DAC .

Внаслідок електричних процесів, зв'язаних з роботою серця, у кожнім зі стандартних відведень реєструється досить складна залежність різниці потенціалів від часу, що називається електрокардіограмою.

Звичайно найбільш сильним є сигнал, що региструється у другому стандартному відведенні. Нормальна електрокардіограма, отримана в другому відведенні, має вид, показаний на рис.6.


Рис.6. Нормальна електрокардіограма.


Як видно з цього Рисунка, на кардіограмі можна виділити типові піки (зубці), що прийнято позначати буквами Р, Q, R, S, Т. З трьох петель, описуваних кінцем вектора  серця протягом серцевого циклу, з першою петлею зв'язують зубець Р, із другою - систему зубців QRS, а з третьою - зубець Т.

Зубець Р зв'язаний з електричними процесами, що викликають систолу (скорочення) передсердь, тобто він відбиває проходження хвилі потенціалу дії по м'язових волокнах передсердь. Система зубців QRS обумовлена протіканням іонних струмів при генерації потенціалів дії в м'язових волокнах шлунківв, що є причиною їхньої систоли. Звичайно максимальне значення різниці потенціалів, що відповідає зубцю R у другому відведенні, складає величину порядку 1 мв. Зубець Т спостерігається під час діастоли (розслаблення міокарда) і відбиває процеси реполяризації (відновлення колишніх потенціалів) мембран кліток міокарда. Ці процеси, головним чином, зв'язані з іонними струмами, що протікають через мембрани м'язових волокон при роботі в цих волокнах натрій-калієвого насоса.

Вимір різниці потенціалів у стандартних відведеннях дозволяє фіксувати зміни згодом не самого вектора , а тільки його проекції на площину трикутника відведень. Для того, щоб зареєструвати складову вектора , перпендикулярну площини трикутника стандартних відведень, необхідні додаткові електроди, розташовувані поза цією площиною. Ці розуміння є біофізичним обґрунтуванням використання грудних відведень (див. рис. 7), що у діагностичній практиці служать для уточнення характеру порушень роботи серця.



Рис.7. Грудні відведення для зняття електрокардіограми.


З реєстрацією змін потенціалів, обумовлених роботою серця, зв'язана і така діагностична методика, як вектор-кардіографія.


5. ВЕКТОРНА ЕЛЕКТРОКАРДІОГРАФІЯ


Векторна електрокардіографія полягає у вимірі вектора дипольного моменту еквівалентного диполя серця протягом кардіоцикла. Цей вектор називають електричним вектором серця чи просто вектором серця. За даними вимірів на поверхні тіла максимальне значення модуля вектора серця складає близько 2 • 10-5 А • м.

У векторній електрокардіографії реєструють два види кривих, що характеризують вектор дипольного моменту еквівалентного диполя серця: (1) просторова векторна електрокардіограма (ВЕКГ), що представляє собою траєкторію кінця вектора Do у тривимірному просторі протягом кардіоцикла; (2) плоскі векторні електрокардіограми (петлі) — криві, описувані протягом кардіоцикла кінцем проекції вектора дипольного моменту еквівалентного диполя на яку-небудь площину (рис.8). На практиці мають справу в основному з плоскими ВЕКГ.


Рис. 8. Плоскі ВЕКГ здорової людини (1-4) і при передньому інфаркті міокарда (5).

1, 3-проекції на фронтальну і ліву сагитальну площину;

2, 4, 5 - проекції на горизонтальну площину;

1-3 - той самий обстежуваний;

4 -інший обстежуваний;

Dr Dy, Dz - проекції вектора серця (ВР) на координатні осі в одиницях 10-6А• м (1-4) чи у відносних одиницях (5);

Dzx — проекція ВР на площину zx.

ПС і ЛС- права і ліва сторона обстежуваного. Криві стрілки показують напрямок переміщення кінця проекції ВР у періоди QRS-комплексу чи Т - хвилі.

Для дослідження ВЕКГ людини розроблено кілька систем відведень потенціалів, що відрізняються по числу і розташуванню електродів, що відводяться, на поверхні тіла, вибору площин для одержання плоских ВЭКГ. Плоскі ВЭКГ найчастіше аналізують у декартовой системі координат з початком, розташованим у геометричному центрі шлунків серця чи в центрі середнього горизонтального (трансверсального) перетину грудної клітки. Напрямок осей щодо тіла випробуваного: х — праворуч ліворуч; у — зверху вниз; z — попереду назад. Плоскі ВЕКГ одержують у проекціях на горизонтальну, фронтальну і сагитальну площини. Приклад плоских ВЕКГ здорової людини приведений на рис. (петлі Р хвилі не зображені). Хоча вид петель ВЕКГ трохи міняється від індивідуума до індивідуума, їхня загальна форма при цьому зберігається (порівн. криві 2 і 4). При багатьох хворобах серця форма плоских ВЕКГ різко трансформується, і це використовується в діагностичних цілях. Наприклад, у QRS-петлі ВЕКГ у проекції на горизонтальну площину відсутня нижня частина при інфаркті передньої ділянки межшлункової перегородки і суміжної передньої стінки лівого шлунка (рис.8, графік 5).

При вектор-кардіографії чотири електроди розміщають поблизу області серця в двох взаємно перпендикулярних площинах. Региструємі різниці потенціалів від протилежно розташованих електродів подаються на пластини електроннопроменевої трубки, що відхиляють вертикально і горизонтально (наприклад, осцилографа). При цьому на екрані можна спостерігати переміщення кінця вектора , що утворить три петлі.

Аналіз і інтерпретація електрокардіограм і векторів-кардіограм у клініці базується, в основному, на накопиченому кардіологами практичному досвіді. Кожна кардіограма порівнюється зі стандартними відомими кривими, відповідність яких тим чи іншим відхиленням від норми твердо встановлено на практиці. Легко ідентифікуються по ЕКГ аритмії, багато форм порушення збудливості серця. По виду ЕКГ можна установити наявність інфаркту міокарда і навіть його локалізацію. Важливу інформацію можна одержати і про інших патологіях серця. В даний час у клінічну практику усе ширше впроваджуються автоматизовані системи реєстрації й аналізу електрокардіограм, методи внутріпорожнинної електрокардіографії, програмувальної електричної стимуляції серця, тривалого мониторировання ЕКГ по Холтеру, багатополюсне ЕКГ (чи картировання серця), проведення електрокардіографії в сполученні з різноманітними навантажувальними тестами і т.п.

З появою комп'ютерів, що володіють великими обчислювальними можливостями і мають порівняно низьку вартість, у медицині з'явилися комп'ютерні системи, у яких широко застосовується складна математична обробка результатів електрографічних вимірів. Це, у першу чергу, відноситься до методик електроенцефалографії й електрокардіографії, де почали широко використовуватися багатоканальні діагностичні системи, що забезпечують:

а)вимір біоелектричних потенціалів одночасно у великому числі крапок на поверхні голови чи грудній клітці пацієнта;

б) обчислювальну обробку результатів виміру з використанням різних математичних моделей;

в) представлення остаточних результатів обчислень на екрані монітора ЕОМ у виді топографічних карт із прив'язкою до анатомічних орієнтирів.

Такий спосіб відображення, що одержав назву «картировання» чи «мапинг», дозволяє забезпечити більш надійну і точну діагностику в порівнянні з традиційною електроенцефалографією і електрокардіографією.

 


Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.