Рефераты. Общие принципы оценки качества лекарственных форм

Кислотно-основное титрование смесей основано на различии констант диссоциации компонентов. Поэтому данный метод используют при наличии в смеси нескольких компонентов с кислотно-основными свойствами. Дифференцированное титрование смесей кислот, оснований или их солей возможно, если константы диссоциации компонентов смеси различаются не менее чем в 1000 раз.

Ступенчатое кислотно-основное титрование, основанное на последовательном определении компонентов смеси в одной пробе с использованием различных индикаторов, применяют при определении компонентов ЛФ, содержащих карболовые кислоты и их соли в сочетании с барбитуратами или органическими основаниями, аминокислоты в смеси с кислотой аскорбиновой, никотиновой и др.

При наличии в смеси только одного ЛВ, проявляющего кислотные или основные свойства, титрование осуществляют соответственно алкалиметрическим или ацидиметрическим методом. Выбор индикатора зависит от константы диссоциации. Для титрования хлороводородной кислоты используют метиловый красный, аминокапроновой — фенолфталеин, глутаминовой — бромтимоловый синий и т.д. Варьирование индикаторами возможно также в следующих случаях.

1.                Если смесь содержит два компонента, значительно различающихся по основности, то используют два разных индикатора и последовательно титруют вначале один, а затем второй ингредиент. Можно подобрать условия определения смесей кислот или оснований, рН растворов которых отличаются друг от друга. При титровании смеси кислот или оснований с различными константами диссоциации вначале титруются более сильные кислоты (основания), затем — более слабые.

2.                Если один из компонентов смеси представляет собой кислоту, а другой — соль или основание, то в одной навеске вначале титруют кислоту, а затем — сумму образовавшейся соли или основания. Расчет выполняют по разности количеств затраченных титрованных растворов кислоты и щелочи.

3.                При анализе смеси ЛВ, одно из которых нерастворимо или мало растворимо в воде, используют несмешивающиеся или смешанные растворители (воду и спирт). Подбирая соответствующие растворители и индикаторы, можно последовательно оттитровать два ЛВ, проявляющие кислотные или основные свойства, но имеющие различные константы диссоциации.

4.                Методом неводного титрования можно количественно определять без разделения двухкомпонентные ЛФ. Для этого используют два способа. Один из них заключается в титровании каждого ингредиента в том растворителе, в котором проявляются только его кислотные или основные свойства. Так можно определять смеси кислоты и основания, кислоты и соли, основания и соли. Второй способ основан на дифференцированном титровании в одном растворителе обоих ЛВ, имеющих разные константы ионизации. Этим способом титруют смеси оснований с солями и смесь оснований. При титровании в среде ледяной уксусной кислоты можно без разделения последовательно определять смесь более сильного и более слабого органического основания.

5.                Последовательное титрование одной навески ЛФ вначале в водной, а затем в неводной среде может быть применено, когда в состав бинарной ЛФ входят слабые основания (пуриновые алкалоиды) и алкалоиды с более сильными основными свойствами. Если ЛФ включает пуриновые алкалоиды и вещества слабокислого характера (барбитураты), то последние определяют алкалиметрическим методом после предварительного извлечения эфиром. Пуриновые алкалоиды в той же навеске определяют в неводной среде методом неводного титрования.

 

3.2.2 Количественный анализ смесей после предварительного разделения компонентов

Разделение смеси с помощью экстракции основано на различии растворимости компонентов в воде и в органических растворителях или на различии кислотно-основных свойств. По этому принципу Л В могут быть распределены на группы.

Неорганические вещества, как правило, нерастворимы в органических растворителях. Оксиды металлов нерастворимы в воде, но растворимы в кислотах. Соли большинства неорганических кислот и щелочных, щелочно-земельных и тяжелых металлов (за исключением сульфатов кальция и бария) хорошо растворимы в воде.

Органические кислоты алифатического ряда, оксикислоты, аминокислоты, как правило, растворимы в воде. Ароматические кислоты (бензойная, салициловая, ацетилсалициловая) практически нерастворимы (мало растворимы) в воде и растворимы в органических растворителях.

Соли органических кислот (лимонной, уксусной, молочной, глюконовой, бензойной, салициловой), натриевые соли барбитуратов, сульфаниламидов растворимы в воде и нерастворимы в таких органических растворителях, как хлороформ, эфир.

Все органические основания обычно растворимы в органических растворителях. Однако они мало растворимы или практически нерастворимы в воде. Большинство органических оснований и алкалоидов растворимы в растворах кислот (с образованием солей).

Соли органических оснований хорошо растворимы в воде, этаноле и, как правило, нерастворимы в таких органических растворителях, как эфир, хлороформ. Некоторые из солей органических оснований, в том числе алкалоидов (кокаина гидрохлорид, папаверина гидрохлорид), растворимы и в воде, и в хлороформе.

Фенолы растворимы в щелочах с образованием фенолятов (феноксидов). Простые одноатомные и двухатомные фенолы легко растворимы в воде. Фенолы более сложной химической структуры, как правило, в воде нерастворимы. Некоторые азотсодержащие соединения (сульфаниламиды, алкилуреиды сульфокислот, циклические уреиды) растворимы в щелочах с образованием натриевых солей.

Органические вещества, не образующие солей с кислотами и щелочами (производные сложных эфиров, уретаны, ациклические уреиды, ацетаминопроизводные, терпены), обычно нерастворимы (трудно растворимы) в воде и растворимы в органических растворителях.

Имеются группы органических ЛВ, которые очень мало растворимы и в воде, и в органических растворителях (производные нитрофурана, 4-оксикумарина, урацила).

Различаются по растворимости природные биологически активные вещества. Препараты сердечных гликозидов мало растворимы или практически нерастворимы в воде и в эфире. Практически нерастворимы в воде препараты стероидных гормонов. Большинство из них растворимо в растительных маслах и в этаноле. Витамины по растворимости разделяются на две группы: водорастворимые и жирорастворимые. Антибиотики (левомицетин, феноксиметилпенициллин, гризеофульвин, эритромицин) мало растворимы или практически нерастворимы в воде. Натриевые и калиевые соли антибиотиков, а также их соли с хлороводородной, серной кислотой, как правило, хорошо растворимы в воде, но нерастворимы (мало растворимы) в органических растворителях.

Используя указанное различие в растворимости ЛВ, можно осуществить разделение компонентов Л Ф следующими методами.

1.                При наличии в смеси Л В, хорошо растворимых в воде и практически в ней нерастворимых, разделение осуществляют обработкой смеси водой с последующим фильтрованием. На фильтре остаются нерастворимые в воде вещества. Так можно отделять от других ингредиентов растворимые в воде неорганические соли, соли органических кислот, соли азотсодержащих органических оснований.

2.                ЛВ, растворимые в органических растворителях, не смешивающихся с водой (хлороформ, эфир), можно отделять от ЛВ, нерастворимых в этих растворителях. Разделение выполняют путем экстракции хлороформом или эфиром. Так можно отделять ароматические кислоты и органические основания от солей неорганических и органических кислот, а также от солей органических оснований.

3.                ЛВ, растворимые в органических растворителях, можно отделять от некоторых алифатических кислот и производных фенолов. Последние необходимо предварительно действием щелочей превратить в водорастворимые феноксиды (феноляты). Затем растворителем, не смешивающимся с водой (хлороформом или эфиром), извлекают ЛВ, растворимые в этих растворителях.

4.                Для отделения ЛВ, растворимых в хлороформе или эфире, от органических оснований последние предварительно нейтрализуют кислотами. Полученные соли оснований остаются в водном растворе.

5.                Соли органических оснований можно предварительно превратить в основания путем нейтрализации связанных кислот щелочами. Образующиеся органические основания затем экстрагируют хлороформом или эфиром.

Если, пользуясь описанными методами, удается количественно разделить компоненты смеси, то каждый из них затем определяют тем или иным титриметрическим методом. При разделении смесей, содержащих три компонента и более, нередко получаются двухкомпонентные экстракты веществ с одинаковой растворимостью. Их анализируют методами осаждения или кислотно-основного титрования, последовательно определяя каждый из компонентов.

Следует учитывать, что ЛВ, мало растворимые в воде или в органическом растворителе, частично извлекаются вместе с отделяемым компонентом. Это нередко не дает возможности выполнить количественное разделение смеси. Необходимо также обращать внимание на отсутствие примеси воды в органическом растворителе. Разделение сухих ЛФ таким растворителем приводит к частичной экстракции ЛВ, растворимых в воде.

После извлечения ЛВ органическим растворителем последний обычно вначале удаляют, а затем проводят титрование. Органические основания, в т.ч. основания алкалоидов, извлекают из смесей хлороформом. Растворитель отгоняют, остаток растворяют в воде или в этаноле и титруют хлороводородной кислотой, используя индикатор, соответствующий константе диссоциации основания.

Количественное определение методом нейтрализации некоторых смесей, содержащих соли органических кислот и соли органических оснований, выполняют в присутствии органических растворителей (хлороформа, эфира). Последние извлекают выделяющуюся органическую кислоту или органическое основание в процессе титрования. Извлечение необходимо, так как, проявляя кислотные или основные свойства, они могут повлиять на результаты титрования.

Если в смеси содержатся гидрохлорид органического основания и неорганическая кислота, то вначале титруют сумму кислот (связанной и свободной). Затем отдельно титруют хлороводородную кислоту, связанную с органическим основанием, аргентометрическим методом по хлорид-иону. Содержание рассчитывают по разности израсходованных титрованных растворов гидроксида натрия и нитрата серебра одинаковой молярной концентрации.

 

4. Физико-химические методы анализа многокомпонентных лекарственных форм

 

4.1 Количественный анализ смесей без предварительного разделения компонентов


Физико-химические методы дают возможность выполнения анализа двух- и даже трехкомпонентных смесей без предварительного разделения с достаточной для фармацевтического анализа точностью.

Из электрохимических методов для количественного определения многокомпонентных лекарственных форм используют полярографию и потенциометрию. Полярографическим методом можно, например, анализировать витамины (тиамин, рибофлавин, пиридоксин, кислоту аскорбиновую) в смесях. Метод неводного титрования в сочетании с потенциометрией позволяет в одной навеске без разделения последовательно определять содержание нескольких компонентов. Это обусловлено улучшением условий кислотно-основного титрования за счет объективного установления точки эквивалентности с помощью индикаторного и стандартного электродов.

Фотоколориметрическим методом при подборе соответствующих цветных реакций определяют, как правило, содержание одного из ЛВ в многокомпонентных ЛФ. Так, на основе фенолгипохлоритной реакции можно установить содержание кофеина в смеси. Определению кофеина не мешают около 20 других Л В. Для количественной оценки парацетамола в смесях с метамизолом-натрия, кофеином, салицилатами используют методику, основанную на гидролизе и последующем диазотировании и азосочетании.

Спектрофотометрический метод определения без предварительного разделения компонентов основан на аддитивности значений оптической плотности всех компонентов смеси при одной длине волны. Спектрофотометрическое определение двух (и более) компонентных ЛФ может быть осуществлено различными способами.

1.                ЛФ содержит два ЛВ, одно из которых имеет максимум светопоглощения, а другое не поглощает УФ-свет в данной области. Спектрофотометрический анализ выполняют как при анализе однокомпонентной ЛФ.

2.                Каждый из двух компонентов смеси имеет свой максимум светопоглощения, в котором второй компонент оптически прозрачен. Последовательно анализируют одно, а затем второе ЛВ в соответствующем максимуме светопоглощения.

3.                ЛФ включает два ЛВ, причем в максимуме поглощения одного из них имеет некоторое светопоглощение и второе вещество, а в максимуме поглощения второго вещества первое оптически прозрачно. Такие смеси анализируют методом изолированной абсорбции. ЛВ, в максимуме которого другой компонент не поглощает, определяют как в однокомпонентной ЛФ. Метод изолированной абсорбции используют, например, для анализа ацетилсалициловой кислоты в присутствии салициловой.

4.                Если двухкомпонентая ЛФ содержит ЛВ, полосы поглощения которых налагаются друг на друга, то для количественного определения может быть использован расчетный метод Фирордта. Метод приемлем, если при двух длинах волн наблюдается значительное различие в интенсивности поглощения обоих компонентов. Предварительно с помощью стандартных образцов устанавливают значения удельных показателей поглощения обоих компонентов при каждой выбранной для анализа длине волны. Затем для определения каждого компонента устанавливают оптическую плотность анализируемого раствора смеси при обеих длинах волн. Точность зависит от того, насколько велико различие между светопоглощением компонентов смеси. Она будет наибольшей, когда одна длина волны является максимумом светопоглощения одного ЛВ и минимумом для второго, а при второй длине волны будет наблюдаться обратное явление.

5.                Количественное определение сухих двухкомпонентных ЛФ можно выполнять без предварительного разделения и без вычисления удельных показателей поглощения компонентов. Сущность метода заключается в том, что готовят растворы каждого из компонентов, содержащихся в ЛФ, той же концентрации, что и общая концентрация раствора смеси Сем. Затем при избранной аналитической длине волны измеряют оптическую плотность раствора ЛФ относительно раствора одного из компонентов (А\), а потом оптическую плотность второго компонента относительно раствора ЛФ (Лг).

6.                Широкие возможности в анализе многокомпонентных смесей открывает использование различных методов дифференциальной фотометрии. При дифференциальном фотометрическом анализе смесей, содержащих два компонента, измеряют оптические плотности анализируемого раствора при двух длинах волн. Измерения выполняют относительно растворов сравнения, содержащих стандартные образцы анализируемых ЛВ. Другой вариант метода основан на использовании двух растворов сравнения. Однако каждый из них включает один из компонентов той же концентрации, в которой он содержится в смеси. Поэтому при расчете содержания одного компонента концентрация второго вычитается. Это позволяет добиться высокой точности анализа. Можно достигнуть положительных результатов, используя один и тот же раствор сравнения, состав которого близок к составу анализируемой смеси.

7.                Значительно упрощает выполнение анализа ЛФ применение Д£-спектрофотометрического метода. Он может быть использован в количественном анализе как однокомпонентных ЛФ, так и многокомпонентных смесей. Обязательное условие выполнения анализа — неизменяемость УФ-спектра поглощения компонентов смеси, но изменение его у анализируемого ЛВ, происходящее под действием кислот, щелочей, окислителей, УФ-облучения и др. Использование Д-Е-дифференциального метода исключает влияние светопоглощающих наполнителей, содержащихся в готовых ЛФ.

8.                Перспективным является метод производной спектрофотометрии, или метод ортогональных функций. Он приемлем для определения одного вещества в присутствии другого, если их спектральные кривые аппроксимируются полиномами разных степеней. Наиболее простым вариантом использования ортогональных функций является определение вещества на фоне линейного поглощения примеси, наполнителей или основы ЛФ. Производная спектрофотометрии дает возможность выполнять определение ЛВ в многокомпонентных смесях.

 

4.2 Количественный анализ смесей после предварительного разделения компонентов


Разделение компонентов смеси основано на различии их растворимости. ЛФ, содержащие более двух светопоглощающих веществ, как правило, предварительно разделяют на отдельные фракции, применяя различные экстрагенты (эфир, хлороформ, растворы кислот, щелочей и др.). Если фракция содержит одно ЛВ, его определяют спектрофотометрическим методом. При наличии в экстракте двух ингредиентов пользуются методом изолированной адсорбции, методом Фирордта и др. Наряду со спектрофотометрией после разделения могут быть использованы другие фотометрические методы.

Метод экстракционной фотометрии позволяет выделять ЛВ из смеси с последующим его определением. Большие возможности создает использование этого метода в анализе органических оснований и их солей, в т.ч. алкалоидов. Наиболее часто применяемые реагенты — метиловый оранжевый и другие красители. С помощью экстракционной фотометрии удалось определить два близких по свойствам вещества: эфедрин и димедрол, а также другие смеси.

Тонкослойная хроматография (ТСХ) особенно широко используется в анализе Л Ф, содержащих практически во группы ЛВ. Разделение с помощью ТСХ сочетают с количественным определением непосредственно на хроматограммаили после элюирования ЛВ, используя для этой цели различные методы.

1.                Раствор ЛФ хроматографируют, проявляют хроматограмму и производят сравнительную оценку площади пятен анализируемого ЛВ и стандартного образца. Измерения выполняют планиметрически, рассчитывая площадь пятна по ради усам его зон.

2.                Сочетают разделение с помощью ТСХ и спектрофотометрическое определение непосредственно на хроматограммах. Способ применяют для анализа смесей алкалоидов, сульфаниламидов, стероидных гормонов. Точность его сравнительно мала.

3.                Измеряют интенсивность окраски пятна на хроматограмме, пользуясь денситометрическим методом, а также методами, основанными на измерении интенсивности отражения или флуоресценции. Способ применим для анализа витаминов, гликозидов.

4.                Элюируют Л В из соответствующих зон тонкослойной хроматограммы стандартного образца и ЛФ. Затем в каждом из элюатов устанавливают концентрацию Л В, применяя для этого оптические методы, полярографию и др. Но чаще все го анализ Л В в элюатах осуществляют методами УФ-спектрофотометрии или фотоколориметрии.

Газожидкостная хроматография (ГЖХ). В отличие от ТСХ и иных видов хроматографии в ГЖХ не требуется сочетание с другими методами для количественной оценки состава анализируемой смеси. С помощью ГЖХ можно разделить и установить подлинность и выполнить количественное определение ЛФ, содержащих до 8-10 компонентов.

Высокоэффективную жидкостную хроматографию используют для разделения и количественного определения близких по химической структуре веществ производных фенотиазина, сульфаниламидов, антибиотиков тетрациклинового ряда. Метод приемлем, например, для определения трехкомпонентных смесей алкалоидов. ВЭЖХ оказалась эффективной и при анализе современных мультивитаминных ЛС, содержащих до 13 витаминов и 18 микроэлементов в одной ЛФ. Трудности анализа обусловлены малым содержанием этих веществ (от нескольких микрограммов до сотен миллиграммов).

Для количественного определения многокомпонентных смесей иногда сочетают титриметрические и физико-химические методы. Такой способ весьма эффективен при анализе трех (и более) компонентов в смеси. Чаще применяют сочетание титриметрических методов с фотометрическими, например, при анализе смеси эфедрина и папаверина гидрохлоридов и натрия бензоата используют фотометрический метод для определения эфедрина, остальные компоненты титруют в неводной среде.

Многокомпонентные ЛФ можно также определять, сочетая титриметрические методы в водной и неводной средах со спектрофотометрией. Исключить процесс разделения ингредиентов двух- и трехкомпонентных смесей можно сочетанием дифференцированного потенциометрического и фотометрического титрования в среде неводных растворителей с использованием нескольких индикаторов.


Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.