Рефераты. Мікроорганізми як джерело створення безпечних антимікробних засобів

У клітинах багатьох прокаріотів поряд з бактеріальною хромосомою містяться і позахромосомні кільцеві молекули ДНК, що дістали назву плазмідів. Вони здатні до автономної реплікації і зумовлюють деякі спадкові властивості бактерій, наприклад, здатність до кон'югації, резистентність до антибіотиків тощо.

Внутрішньоцитоплазматичні включення. В цитоплазмі прокаріотів різних видів містяться також включення, що оточені білковою мембраною і функціонують як структури. До них належать хлоросоми, фікобілісоми, аеросоми, магнітосоми і карбоксисоми. Серед включень, у яких відсутня мембрана, трапляються ті, що є місцем запасання поживних речовин та концентрування продуктів клітинного обміну, які відкладаються всередині прокаріотних клітин. За консистенцією вони бувають рідкі, тверді та газоподібні.

Хлоросоми — внутрішньоцитоплазматичні включення, які беруть певну участь у процесі фотосинтезу зелених бактерій. Вони мають форму пухирців, завдовжки 100-150 і завширшки 25—70 нм, оточені одношаровою щільною білковою мембраною, завтовшки 2—3 нм. У хлоросомах містяться бактеріохлорофіли. Хлоросоми розташовані біля цитоплазматичної мембрани.

Фікобілісоми характерні для ціанобактерій. Як і хлоросоми, вони беруть участь у процесі фотосинтезу. Ці включення мають напівсферичну форму і розташовуються правильними рядами на зовнішній поверхні фотосинтетичної мембрани. У фікобілісомах містяться водорозчинні пігменти білкової природи — фікобіліпротеїни.

Карбоксисоми — структури, що мають вигляд багатокутників, виявлені в клітинах фототрофних і хемолітотрофних еубакте-рій. Вони оточені одношаровою мембраною білкової природи і містять рибулозодифосфаткарбоксилазу — фермент, який бере участь у процесі фіксації СО2 у відновному пентозофосфатному циклі [1].

До включень, які мають пристосувальне значення належать магнітосоми і аеросоми. Магнітосоми виявлені в клітинах бактерій, яким притаманний магнітотаксис, тобто здатність плавати вздовж ліній магнітного поля, наприклад Aquaspirillum magneto-tacticum. Магнітосоми являють собою частинки Fe3O4, оточені мембраною. У різних видів прокаріотів магнітосоми можуть мати різну форму і різне розміщення в їхніх клітинах.

Аеросоми або газові вакуолі виявлено у представників 15 таксономічних груп (ціанобактерії, пурпурні, галобактерії, клостридіїта ін.). Вони оточені білковими мембранами завтовшки до 2 нм і за формою нагадують бджолині соти. Пухирці аеросом заповнені газом, подібним до газу довкілля. Вважають, що вони виконують функцію регуляторів плавучості цих організмів. Завдяки аеросомам бактерії можуть займати в товщі води найбільш вигідне положення щодо вмісту в ній поживних речовин, кисню, освітлення тощо.

До включень, які виконують роль запасних поживних речовин, належать полісахариди, ліпіди, поліпептиди, поліфосфати тощо. Із включень полісахаридної природи в клітинах найчастіше відкладаються глікоген, крохмаль і гранульоза (крохмалеподібна речовина). У випадку несприятливих умов ці сполуки використовуються прокаріотами як джерело вуглецю і енергії.

Ліпіди нагромаджуються в клітинах у вигляді гранул і крапельок жиру, зокрема таким включенням часто є полімер (3-оксимасляної кислоти. Накопичення ліпідів у клітинах надзвичайно інтенсивно відбувається тоді, коли середовище багате на вуглеводи та бідне на азот. Як і полісахариди, ліпіди є для бактерій добрим джерелом вуглецю і енергії.

Дуже поширеними запасними речовинами у багатьох прокаріотів є поліфосфати, які дістали назву волютину (метахроматинові гранули). Волютин нагромаджується в оцтовокислих, молочнокислих, азотфіксуючих та інших видах бактерій. Гранули волютину складаються переважно із поліфосфатів, а тому його найчастіше розглядають як внутрішньоклітинний резерв фосфору. Він використовується клітиною як джерело фосфору і енергії.

У ціанобактерій виявлено специфічні ціанофіцинові запасні речовини поліпептидної природи, які містять аспарагінову кислоту і аргінін. Поява цих включень під час культивування ціанобактерій з азотом і зникнення їх за виснаження середовища на азот дає підстави вважати, що вони є резервом азоту в разі браку його в середовищі. До включень, що їх відносять до продуктів клітинного метаболізму, належать виявлені в цитоплазмі деяких бактерій кристалоподібні включення білкової природи ромбоподібної, кубічної та інших форм. Ці утворення виявились дуже токсичними для гусениць шкідливих комах [5].

Для багатьох сіркобактерій характерне відкладання в клітинах молекулярної сірки як продукту клітинного обміну. Для аеробних тіонових бактерій, які окислюють H2S, сірка є джерелом енергії, а для анаеробних фотосинтезуючих сіркобактерій вона є донором електронів. У сіркобактерій із роду Achromatium виявлено включення у вигляді гранул карбонату кальцію, фізіологічне значення якого досі ще не з'ясовано.

У бактерій родів Caedobacter і Pseudomonas виявлено включення білкової природи, округлої форми, які заломлюють світло. Вони дістали назву R-тілець. Формування їх визначається вірусними або плазмідними генами. Функції R-тілець досі ще не вивчені.

 

РОЗДІЛ 2. МОЖЛИВОСТІ ВИКОРИСТАННЯ МІКРОБІОЛОГІЧНИХ ПРЕПАРАТІВ ДЛЯ БОРОТЬБИ ІЗ ШКІДНИКАМИ


2.1 Мікробіологічні інсектициди


Мікробіологічні інсектициди забезпечили новий летальний фактор для боротьби з деякими рослиноїдними шкідниками сільськогосподарських культур або лісу. Рівень чисельності популяції шкідника не впливає на ефективність цих препаратів. Для боротьби з комахами, що мають значення в медицині і ветеринарії, мікробіологічні інсектициди ще не розроблені, за винятком екзотоксину Bacіllus thurіngіensіs, що активно діє проти мух і вший (у даний час ще не використовується у виробничих масштабах).Число мікробіологічних інсектицидів дуже не велике в порівнянні з числом хімічних препаратів. Однак в обмеженому числі випадків, коли вони можуть використовуватися, вони настільки ж ефективні, як найкращі хімічні препарати, хоча вони часто коштують набагато дорожче. Препарати, що містять Bacіllus thurіngіensіs (ВТ), дозволені і використовуються у виробничих масштабах для боротьби з деякими шкідливими лускокрилими. Методи виробництва і складання препаратів добре розроблені. Число видів сприйнятливих метеликів велике й усі зростає і на щастя включає лише далеко не всі корисні види. Віруси поліедрозу і гранульозу численні, але вони більш специфічні, хоча в сукупності мають дуже широке коло хазяїнів і настільки ж перспективні в боротьбі зі шкідниками, як і ВТ. Велика перевага мікробіологічних інсектицидів полягає не тільки в їхній нешкідливості для людини і домашній тварин, але також у їхній специфічності, оскільки корисною комахою вони, видимо, заподіюють не більше шкоди, чим хижаки. Однак така специфічність, часто тільки для одного виду, може виявитися і недоліком, коли необхідно вести боротьбу одночасно з декількома шкідниками. Іншими недоліками, крім високої вартості порівняно з хімічними препаратами, є звичайно відсутність контактної дії, а іноді і здатність заражати тільки одну стадію розвитку шкідника.

Хімічні інсектициди порівняно мало діють на патогени комах, хоча окремі фунгіциди можуть ушкоджувати них; у той же час хімікати можуть підсилювати дія деяких патогенів. У СРСР біля Києва побудований завод для виробництва гриба Beauverіa bassіana.

Оскільки токсини діють на багатьох комахах як кишкові отрути, їхній можна використовувати в чистому вигляді, хоча в даний час використовуються тільки суміші спор із кристалами, тому що немає ніяких підстав для видалення спор. На більшість комах спори спричиняють специфічну дію, особливо в низьких дозуваннях, а в патогенезі деяких видів вони відіграють головну роль. Спорові препарати небажано застосовувати в сховищах запасів, але в препаратах для боротьби зі шкідниками запасів можна знищити не менш 99% суперечка ультрафіолетовим опроміненням без шкоди для кристалів або ж можна шляхом екстракції одержати звільнений від спор кристалічний білок, щоправда, менш стабільний і не в первісній кристалічній формі. В даний час вартість очищення препаратів від опор була б занадто висока. Досить чистий екзотоксин можна і зараз одержувати в промисловому масштабі, але це поки нерентабельне. Якщо екзотоксин у чистому виді виявиться досить нешкідливим, його можна буде застосовувати проти деяких мух, метеликів і інших груп комах.


2.2 Інтродукція мікроорганізмів та мікробіологічний метод боротьби


Патогени, що зустрічаються в природі, також відіграють значну роль у скороченні популяцій шкідників, причому масштаби придушення знов-таки коливалися ,у залежності від часу і району. Гарною ілюстрацією може бути чудове екологічне дослідження Entomophthora florіdana на Eutetranychus banksі в цитрусових насадженнях Флориди.

Дотепер описано близько 1000 видів мікроорганізмів, патогенних для комах і кліщів [20], і маються .надійні методи визначення багатьох видів і штамів, але лише деякі з них були інтродуковані навмисно. Частка успішних інтродукцій як мікро-, так і макробіологічних агентів.

Навмисна інтродукція патогенів і використання їх як мікробіологічні інсектициди є цінним методом боротьби, застосовуваним в наш час у відносно невеликому масштабі, і що патогени являють собою важливий фактор у природному обмеженні чисельності комах. Далі, ми можемо констатувати, що з нових методів боротьби зі шкідниками успіхи мікробіологічної боротьби значно скромніші успіхи, досягнуті у результаті кращого застосування хімікатів або макробіологічних агентів, але більше успіхів від використання стійких сортів рослин. Аналогічні думки були висловлені на симпозіумі в Римі в 1968 р. на тему "Нові перспективи в боротьбі зі шкідливими комахами" [20]. Наші досягнення включають також експертизу при застосуванні мікробіологічного методу і створення організацій для практичного використання і розширення цих знань. Ми здобуваємо більш детальне знання екології, необхідного помічника, тому що мікробіологічна боротьба часто йде повільніше і більш потай, чим хімічна. Так, найбільший ефект інтродукції патогену шкідливої комахи може проявитися через рік після обробки, як це було після інтродукції гриба Entomophthora проти яблонной мідяниці в Канаді і вірусу поліедроза соснового пилильщика в Шотландії. Оскільки мікробіологічний інсектицид може діяти повільно, його не можна використовувати на деяких культурах. Так, застосування вірусу поліедрозу Helіothіs zea дуже перспективно використовується на бавовнику, зерновому сорго і кукурудзі, де можна не зважати на деякі ушкодження, але неприйнятно на томатах, де навіть слабке ушкодження може знизити вартість врожаю [18]. Там, де припустимі невеликі ушкодження, мікробіологічну боротьбу можна вести тільки за допомогою швидко діючого і надійного мікробіологічного інсектициду, наприклад, що містить ВТ. Точно так само приймати як критерій негайну і масову загибель шкідника, яка досягається за допомогою летальних інсектицидів, можна лише в тих випадках, коли потрібно високий ступінь загибелі. Менш масова негайна загибель шкідника, не пригнітюча мікробіального агента, нерідко більш цінна для довгострокової боротьби.

 

2.3 Нешкідливість мікробіологічних агентів


Оскільки було відоме, що мікробіологічні агенти можуть містити токсини, були проведені токсикологічні дослідження на додаток до досліджень більш явної патогенності. Сучасні тенденції - це вимога підвищеної обережності. Урядові органи й установи, що регулюють використання пестицидів, несуть відповідальність за розробку і підтримку стандартів, але це не може служити підставою для бездіяльності або нерозумної затримки використання придатних патогенів. В останні роки США лідирували як у використанні патогенів, так і в розробці законодавства, що регулює їх застосування. Необхідно мати на увазі три аспекти безпеки - нешкідливість для здоров'я робочих, які виробляють або застосовують патоген, для здоров'я споживача, що користується продуктами, обробленими препаратом, нешкідливість для здоров'я диких тварин.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.