Рефераты. Микробиология и иммунология

74.Возбудитель чумы


Высококонтагиозная инфекционная болезнь, вызываемая Yersinia pestis, характеризующаяся тяжелой интокси-кацией, высокой лихорадкой, поражении-ем лимфатической системы, Y. pestis – полиморфная мелкая овоидная палочка, жгутиков не имеет, спор не образует, может образовывать капсулу, грамот-рицательна, с биполярной окраши-ваемостью в мазках, факультативный анаэроб На плотных средах может вырастать в виде колоний R- и S-формы; R-формы обладают высокой виру-лентностью, S-формы менее вирулентны.

Ферментирует углеводы до углекислого газа, В зависимости от ферментации глицерина выделяют «+»- и «−»-варианты.

Солнечный и ультрафиолетовый свет, высушивание, высокая температура и дезинфицирующие средства (фенол, хлорамин.) вызывают быструю гибель Y. pestis. Хорошо переносят низкие температуры, замораживание и оттаивание; в патологическом материале переживают до 10 сут, при 0ºС сохраняются до 6 мес. Чума – природно-очаговое заболевание, относится к особо опасным инфекциям. Основной источник Y.pestis – различные виды грызунов (тарбаганы, сурки, суслики.). Человек заражается в результате укуса инфицированной блохи, а также контактным (при убое больного животного, снятии шкуры, разделке туши) и пищевым (употребление недостаточно термически обработанного мяса больного животного) путями. После заражения источником чумы является больной человек. Возбудитель, проникая через кожу и слизистые оболочки, распространяется по лимфатическим сосудам, быстро размножается, вызывает интоксикацию, поражение лимфатических узлов, легких и других органов. Различают бубонную, легочную и первично-септическую формы. При бубонной форме поражаются лимфатические узлы При воздушно-капельном пути передачи развивается первичная легочная форма чумы. При массивном заражении может быть первично-септическая форма. Независи-мо от формы чумы поражаются все системы и органы: сердечно-сосудистая, почки, печень, селезенка, костный мозг, железы внутренней секреции и др.Иммунитет. Иммунитет различной длительности и напряженности. Описаны случаи повторных заболеваний. Микробиологическая диагностика. Все исследования проводятся в специальных лабораториях, в защитных костюмах. Материалом для исследования могут служить содержимое бубона, мокрота, кровь, кал, кусочки органов умерших, трупов животных и др. Профилактика. Основными являются предупредительные мероприятия, предотвращающие занос инфекции из-за рубежа, и возникновение заболеваний в эндемических по чуме очагах.


79. Возбудитель сибирской язвы


Сибирская язва (– зоонозная инфекционная болезнь, вызываемая Bacillus anthracis, характеризующаяся тяжелой интоксикацией, поражением кожи и лимфатической системы. Это крупная, грамположительная, неподвиж-ная палочковидная бактерия, имеет центральную спору; в организме, а также на специальных пит. средах образует капсулу. В живом организме возбудитель существует в вегетативной форме, в окружающей среде образует устойчивую спору. Споры десятилетиями сохраняют-ся в почве. К возбудителю сибирской язвы восприимчивы крупный и мелкий рогатый скот, лошади, верблюды, свиньи, дикие животные. Сибирская язва распространена повсеместно. Источник инфекции–больные животные. Пути передачи инфекции различные: контакт-но-бытовой (при уходе за животными, снятии шкуры), аэрогенный (при вдыхании пыли, содержащей микробы), пищевой (употребление недостаточно термически обработанного мяса больных животных) и трансмиссивный (при кровососании слепнями, мухами).Разли-чают кожную, легочную, кишечную формы сибирской язвы, которые могут осложняться сепсисом.. При кожной форме на месте внедрения возбудителя развивается сибиреязвенный карбункул с образованием буро-черной корки При кишечной и легочной форме развиваются интоксикация, геморрагические пораже-ния кишечника и легких. Летальность высокая. Иммунитет. стойкий иммунитет.

Микробиологическая диагностика. Материалом для исследования служат содержимое карбункула, мокрота, испражнения, кровь. Проводят бактериоскопию мазков, делают посевы на питательные среды, заражают лабораторных животных (биопроба). Профилактика. Неспецифическая профи-лактика основывается на комплексе ветеринарно-санитарных мероприятий: выявляют и ликвидируют очаги инфекции. Специфическая - живой сибиреязвенной вакцины СТИ,


80.Возбудитель гонореи


Гонорея – инфекционное венерическое заболевание, вызываемое Neisseria gonorrhoeae, характеризующееся гнойным воспалением слизистых оболочек органов мочеполовой системы, острое гнойное воспаление слизистой оболочки глаза – бленнорею. Гонококк – грамотрицательный диплококк бобовидной формы, неподвижен, спор не имеет, капсулы не образует. Гонококк – аэроб, выращивается на питательных средах, содержащих сыворотку, кровь или асцитическую жидкость. Гонококк отличается высокой чувствительностью к высушиванию, дезсредствам, Гонококк является абсолютным паразитом человека. Единственным источником инфекции является больной человек. Основной путь передачи возбудителя – половой, при бленнорее заражение происходит через инфицированные родовые пути матери.

Гонококки, попадая в организм, прикрепляются к эпителию мочевых путей и слизистых оболочек половых путей Размножаются на слизистых оболочках, освобождают после гибели эндотоксин, вызывают воспалительный процесс с обильной миграцией лейкоцитов. проявляется истечением гноя из мочеиспускательного канала, сопровождаемым болями при мочеиспускании.

Иммунитет. не оставляет иммунитета,

Микробиологическая диагностика. Основной метод диагностики – бактериоскопия препаратов гнойного отделяемого, окрашенных по Граму и метиленовым синим. При отсутствии результатов бактериоскопии используют бактериологический метод.

Лечение – применение антибиотиков и химиопрепаратов. При хронической гонорее вводят убитую гонококковую вакцину с целью иммунотерапии.


35 Определение чувствительности бактерий


к антибиотикам методом дисков. Исследуемую бактериальную культуру засевают газоном на питательный агар или среду АГВ в чашке Петри

На засеянную поверхность пинцетом помещают на одинаковом расстоянии друг от друга бумажные диски, содержащие определенные дозы разных антибиотиков . Посевы инкубируют при 37 °С до следующего дня. По диаметру зон задержки роста исследуемой культуры бактерий судят о ее чувствительности к антибиотикам.Для получения достоверных результатов необходимо применять стандартные диски и питательные среды, для контроля которых используются эталонные штаммы соответствующих микроорганизмов. Метод дисков не дает надежных данных при определении чувствительности микроорганизмов к плохо диффундируюшим в агар полипептидным антибиотикам (например, полимиксин, ристомицин). Если эти антибиотики предполагается использовать для лечения, рекомендуется определять чувствительность микроорганизмов методом серийных разведений. Определение чувствительности бактерий к антибиотикам методом серийных разведений. Данным методом определяют минимальную концентрацию антибиотика, ингибирующую рост исследуемой культуры бактерий. Вначале готовят основной раствор, содержащий определенную концентрацию антибиотика (мкг/мл или ЕД/мл) в специальном растворителе или буферном растворе. Из него готовят все последующие разведения в бульоне (в объеме 1 мл), после чего к каждому разведению добавляют 0,1 мл исследуемой бактериальной суспензии, содержащей 107 бактериальных клеток в 1 мл. В последнюю пробирку вносят 1 мл бульона и 0,1 мл суспензии бактерий (контроль культуры). Посевы инкубируют при 37 °С до следующего дня, после чего отмечают результаты опыта по помутнению питательной среды, сравнивая с контролем культуры. Последняя пробирка с прозрачной питательной средой указывает на задержку роста исследуемой культуры бактерий под влиянием содержащейся в ней минимальной ингибирующей концентрации (МИК) антибиотика. Оценку результатов определения чувствительности микроорганизмов к антибиотикам проводят по, которая содержит пограничные значения диаметров зон задержки роста для устойчивых, умеренно устойчивых и чувствительных штаммов, а также значения МИК антибиотиков для устойчивых и чувствительных штаммов. К чувствительным относятся штаммы микроорганизмов, рост которых подавляется при концентрациях препарата, обнаруживаемых в сыворотке крови больного при использовании обычных доз антибиотиков. К умеренно устойчивым относятся штаммы, для подавления роста которых требуются концентрации, создающиеся в сыворотке крови при введении максимальных доз препарата. Устойчивыми являются микроорганизмы, рост которых не подавляется препаратом в концентрациях, создаваемых в организме при использовании максимально допустимых доз.

28 Стерилизация — обеспложивание, т. е. полное уничтожение вегетативных форм микроорганизмов и их спор в различных материалах


Стерилизацию проводят физическими методами: 1) воздействием высокой температуры; 2) путем ультрафиолетового облучеяия; 3) механическим путем — фильтрацией жидкостей через бактериальные фильтры, а также химическими методами. Физические методы стерилизации. 1. Прокаливание в пламени> спиртовки или газовой горелки. Данный способ применяется ограниченно, например для стерилизации бактериологических петель, препаровальных игл, пинцетов. 2. Стерилизация сухим жаром в сушильно-стерилизационном шкафу (печи Па стера). При более высокой температуре происходит обугливание ватных пробок, бумаги, в которую завернута посуда, а при более низкой температуре требуется большой срок стерилизации. Сухим жаром стерилизуют стеклянную посуду 3. Стерилизация паром под давлением в паровом стерилизаторе (автоклаве). Один из наиболее эффективных методов стерилизации, который широко применяется не только в микробиологической, но и в клинической практике. 4. Стерилизация текучим паром в аппарате Коха или в автоклаве. Данный вид стерилизации (при незавинченной крышке и открытом выпускном кране) основан на антибактериальном действии пара в отношении вегетативных клеток. Он применяется в тех случаях, когда стерилизуемый материал не выдерживает высокой температуры, например питательные среды с витаминами, углеводами. 5. Тиндализация. Дробная стерилизация материалов при 56—58 °С в течение часа 5—6 дней подряд. Применяется для стерилизации легко разрушающихся при высокой температуре веществ (сыворотка крови, витамины и др.).

6. Стерилизация ультрафиолетовыми лучами. Метод основан на бактерицидном действии УФ-лучей с длиной волны 260—300 мкм. 7. Кипячение Кипячение производят не менее 30 мин. Однако данный метод не обеспечивает полной стерилизации, так как некоторые вирусы (например, вирус гепатита) и споры бактерий могут остаться жизнеспособными. 8. Пастеризация основана на антибактериальном лействии температуры в отношении вегетативных клеток, но не бактериальных спор. 9. Механическая стерилизация (фильтрование). Фильтрование используют для стерилизации жидких материалов, не выдерживающих нагревания (сыворотка крови, антибиотики), для получения бактериальных токсинов, фагов и разных продуктов жизнедеятельности бактерий. 10. Химические методы стерилизации. Используют различные химические вещества, обладающие бактерицидным свойством, но их применение ограничено.


1. Основные этапы развития микробиол. и иммунологии


Историю развития микробиологии можно разделить на пять этапов: эвристический, морфологический, физиологический, иммунологический и молекулярно-генетический.

Эвристический период (IV.III тысячелетие до н.э. – – XVI в. н. э.) связан с логическими методическими приемами нахождения истины, т.е. эвристикой, чем с какими-либо экспериментами и доказательствами. Мыслители того времени (Гиппократ, римский писатель Варрон и др.) высказывали предположения о природе заразных болезней, миазмах, мелких невидимых животных. Эти представления были сформулированы в гипотезу спустя многие столетия Д. Фракасторо высказавшего идею о живом контагии который вызывает болезни. Для предохранения от болезней им были рекомендованы изоляция больного, карантин, ношение масок, обработка предметов уксусом. Антонио Левенгук - сконструировал микроскоп, позволивший увеличивать рассматриваемые предметы в 300 раз. Изучая под микроскопом различные объекты (дождевую воду, настои, кровь, испражнения), Левенгук наблюдал мельчайших животных, которых он назвал анималькулюсами.». Таким образом, с изобретением микроскопа А.Левенгуком начинается следующий этап в развитие микробиологии, получивший название морфологического. Оставались неясными вопросы о появлении микроорганизмов, условиях их жизни, предназначении, участии в возникновении болезней человека. Ответы на эти вопросы были получены русским врачом-эпидемиологом Д. Самойловичем Чтобы доказать, что чума вызывается особым возбудителем, он заразил себя отделяемым бубона больного чумой человека и заболел чумой, Д. Самойлович остался жив. Вопрос о способе появления и размножения микроорганизмов был решен французским ученым Луи Пастером, который в остроумном, гениальном по своей простоте опыте показал, что самозарождения не существует. В 1892г. русский ботаник Д.И.Ивановский открыл вирусы – представителей царства vira. Эти живые существа проходили через фильтры, задерживающие бактерии, и поэтому были названы фильтрующимися вирусами. Однако увидеть вирусные частицы стало возможным только после изобретения электронного микроскопа, так как в световые микроскопы вирусы не видны. К настоящему времени царство вирусов (vira) насчитывает до 1000 болезнетворных видов вирусов. XIX в., особенно его вторую половину, принято называть физиологическим периодом в развитии микробиологии. Этот этап связан с именем Л. Пастера, который стал основоположником медицинской микробиологии, а также иммунологии биотехнологии. Л. Пастер вывел микробиологию и иммунологию на принципиально новые позиции, показал роль микроорганизмов в жизни людей, экономике, промышленности, инфекционной патологии, заложил принципы, по которым развиваются микробиология и иммунология и в наше время. Работы Л. Пастера по вакцинации открыли новый этап в развитии микробиологии, по праву получивший название «иммунологического». Физиологический период в развитии Микробиологии связан также с именем немецкого ученого Роберта Коха, которому принадлежит разработка методов получения чистых культур бактерий, окраски бактерий при микроскопии, микрофотографии. В иммунологический период развития микробиологии был создан ряд теорий иммунитета: гуморальная теория П. Эрлиха, фагоцитарная теория И. И. Мечникова, теория идиотипических взаимодействий Н. Ерне, гипофизарно-гипоталамо-адреналовая теория регуляции иммунитета П. Ф. Здродовского Однако наиболее приемлемой для объяснения многих явлений и механизмов иммунитета остается клонально-селекционная теория, созданная иммунологом Ф. Бернетом Американский ученый С. Танегава разработал генетические аспекты этой теории. С 1950-х годов в развитии микробиологии и иммунологии начался молекулярно-генетический период, который характеризуется рядом важных научных достижений и открытий. К ним относятся: 1 расшифровка молекулярной структуры и молекулярно-биологической организации многих вирусов и бактерий; 2 расшифровка химического строения и химический синтез некоторых антигенов. 3 открытие новых антигенов, например опухолевых 4 расшифровка строения антител-иммуноглобулинов 5 открытие иммуномодуляторов, иммуноцитокинов (интерлейкины, интерфероны, миелопептиды и др.), эндогенных природных регуляторов иммунной системы и их использование для профилактики и лечения различных болезней; 6 получение вакцин (вакцина гепатита В, малярии, антигенов ВИЧ и других антигенов), биологически активных пептидов (интерфероны, интерлейкины, ростовые факторы и др.) с помощью методов биотехнологии и приемов генетической инженерии; 7 разработка синтетических вакцин на основе природных или синтетических антигенов и их фрагментов, а также искусственного носителя – адъюванта (помощника) – стимулятора иммунитета; изучение врожденных и приобретенных иммунодефицитов и разработка иммунокорригирующей терапии. В Российской Федерации существует разветвленная сеть научно-исследовательских институтов и предприятий по производству диагностических, профилактических и лечебных препаратов. В системе РАМН и других ведомств функционируют крупные научно-исследовательские институты: эпидемиологии и микробиологии им. Н. Ф. Гамалеи, вирусологии им. Д. И. Ивановского, полиомиелита и вирусных энцефалитов им. М. П. Чумакова, вакцин и сывороток им. И. И. Мечникова,

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.