|
200 |
+-1.0 |
40 |
0.8 |
-0.25 |
0.25 |
|
200 |
400 |
+-2.0 |
40 |
0.2 |
-1.0 |
1.0 |
|
200 |
400 |
+-1.0 |
40 |
0.2 |
-0.25 |
0.25 |
|
Signal Conditioned (On-Chip) |
|||||||
105 |
400 |
- |
4.59 |
54 |
-1.8 |
1.8 |
|
700 |
2800 |
- |
4.5 |
6.0 |
-2.5 |
2.5 |
|
1000 |
4000 |
- |
4.7 |
5.0 |
-2.5 |
2.5 |
|
Compensated and Calibrated (On-Chip) Medical Grade |
|||||||
40 |
- |
0.75 |
- |
330 |
-2.0 |
2.0 |
5. Температурные датчики. Термисторы.
Одной из наиболее распространенных задач промышленной, бытовой и медицинской автоматики, решаемых путем температурных измерений, является задача выделения заданного значения температуры или диапазона температур, в пределах которого контролируемые физические процессы протекают нормально, с требуемыми параметрами. Это, в первую очередь, относится к приборам и устройствам, работающим при температурах, определяемых условиями жизнедеятельности человека и используемых им при этом приборов машин и механизмов, т.е. –40º +100°С, например, кондиционирование температуры жилых, складских и технологических помещений, контроль нагрева различных двигателей, трансмиссий, тормозных устройств и т.п., системы пожарной сигнализации, контроль температуры в медицине, биотехнологиях и сельском хозяйстве и пр. В качестве чувствительных элементов таких систем в последнее время широко используются полупроводниковые термосопротивления с отрицательным температурным коэффициентом или термисторы (NTC-thermistors). Однако, для решения задачи в целом, т.е. получения электрического сигнала, возникающего при повышении или понижении температуры контролируемого процесса до заданного значения, термистор должен быть снабжен дополнительными электронными схемами, которые и осуществляют решение задачи выделения заданного значения температуры. В Институте проблем управления РАН совместно с фирмой VZ SENSOR Ltd., на основе полупроводниковых структур с L-образной вольтамперной характеристикой были разработаны интеллектуальные (функциональные) термисторы (Z-thermistors), которые способны решать задачу выделения заданного значения температуры без использования дополнительных электронных схем .
Схема включения обычного термистора
Схема включения Z-термистора
Z-термисторы представляют собой полупроводниковую p-n структуру, включаемую в прямом направлении (+ к p-области структуры) в цепь источника постоянного напряжения. Структура обладает функцией перехода из одного устойчивого состояния (с малым током) в другое устойчивое состояние (в 50 - 100 раз большим током) при ее нагреве до заданного значения температуры. Установка требуемого значения температуры срабатывания осуществляется простым изменением напряжения питания. Длительность перехода структуры (Z-термистора) из одного устойчивого состояния в другое 1 - 2 мкс. Схема включения Z-термистора состоит из источника питания U и нагрузочного резистора R, который одновременно служит ограничителем тока Z-термистора при его переходе в состояние с большим током (рис.). Выходной сигнал (бросок напряжения) может быть снят как с нагрузочного резистора R, так и с самого Z-термистора, но с обратным знаком. Как уже было сказано, Z-термистор может быть настроен на любое значение температуры в диапазоне –40 -+100°С путем изменения питающего напряжения U. При этом могут быть изготовлены разные типы Z-термисторов, срабатывающие при одной и той же температуре от разных напряжений питания. Для того, чтобы разделить Z-термисторы по типам, было введено понятие базовой температуры. В качестве базовой было принято значение комнатной температуры (room temperature) +20°С. Принципиально Z-термисторы могут быть изготовлены на любые напряжения срабатывания в пределах от 1 до 100 В при базовой температуре, но для удобства пользователей мы ограничились рядом типовых значений напряжения, чаще всего используемых в электронной технике, а именно: 1,5 В; 3 В; 4,5 В; 9 В; 12 В; 18 В; 24 В (см. таблицу).
Таблица - Технические характеристики Z-термисторов при температуре +20°C и сопротивлении резистора R = 0.25 + 5 кОм
Тип Z-термистора
TZ-1
TZ-3
TZ-4
TZ-12
TZ-18
TZ-24
Пороговое напряжение
Uth(B)
<1,5
3+-0,5
4,5+-1
12+-2
18+-3
24+-3
Пороговый ток
Ith(mA)
<0,05
<0,1
<0,15
<0,2
<0,25
<0,35
Вторичное напряжение
Uf(B)
<0,7
<1,5
<2
<5
<8
<10
Вторичный ток
If(mA)
>1,5
>1,7
>3
>2,5
>3
>3,5
Выходной сигнал
UR(B)
>0,5 Uth
"
"
"
"
"
Рассеиваемая мощность
P(mBт)
<100
"
"
"
"
"
Длительность перехода Uth-Uf
t(мкс)
<5
"
"
"
"
"
Разрешающая способность
Т(°C)
<0,1
"
"
<<0,1
"
"
Чувствительность участка 1
S1(мВ/°C)
>10
"
"
>30
"
"
Чувствительность участка 2
S2(мВ/°C)
>20
"
"
>60
"
"
Чувствительность участка 3
S3(мВ/°C)
>200
"
"
>400
"
"
Быстродействие
Т(сек)
<1
"
"
<<1
"
"
Диапазон рабочих температур: -20 + 100 °C
Диапазон пороговых напряжений: 60 - 0,5 B
Размеры Z-термисторов: 1 x 1 x 0,3; 2 x 2 x 0,3; 3 x 1,5 x 0,3 mm
Маркировка Z-термисторов: TZ-(1; 3; 4; 12; 18; 24)
Здесь: T - функциональный тип сенсора (Thermistor);
Z - физический принцип действия (Z-эффект);
(1; 3; 4; 12; 18; 24) - пороговое напряжение при 20°C
Z-термисторы могут быть использованы не только как высокоточные, надежные и простые в эксплуатации сигнализаторы заданного значения температуры, но также, как температурные сенсоры для непрерывного измерения температуры, приблизительно в том же диапазоне (-40 - +100°С). Для этого могут быть использованы участки 1,2,3 ВАХ (рис.). При этом, зная нижний и верхний пределы измерений температуры, (например, для медицинского термометра +34° - +43°С), напряжение питания выбирается таким, чтобы значение токов термистора, соответствующие этим пределам измерений, находились на выбранном участке ВАХ. Точностные возможности Z-термисторов при их использовании как в пороговом режиме, так и в режиме непрерывных измерений практически полностью определяются стабильностью питающего напряжения и лежат в пределах 0,1 - 0,01°С. Большой интерес с практической точки зрения представляет собой возможность использования Z-термисторов в частотно-импульсном режиме работы. Для этого параллельно Z-термистору подключают емкость С >> 0,05 - 0,15 мкФ (рис.), что вызывает генерацию пилообразных импульсов большой амплитуды (порядка 0,5 от питающего напряжения), частота следования которых пропорциональна температуре.
Вольтамперная характеристика (ВАХ) Z-термистора
Многолетние исследования не выявили каких-либо проявлений деградации или дрейфа рабочих характеристик Z-термисторов. Более чем двукратный по отношению к рабочему диапазону перегрев Z-термисторов не приводит к их разрушению либо к изменению характеристик, что говорит об их весьма высокой надежности (робастности). Z-термисторы не имеют аналогов в мировой практике и технологией их производства не обладает ни один из западных производителей электронных компонентов.
6. Датчики съема ЭКС.
Все устройства съема медицинской информации подразделяют на 2 группы: электроды и датчики (преобразователи). Электроды используются для съема электрического сигнала, реально существующего в организме, а датчик — устройство съема, реагирующее своим чувствительным элементом на воздействие измеряемой величины, а также осуществляющее преобразование этого воздействия в форму, удобную для последующей обработки. Электроды для съема биопотенциалов сердца принято называть электрокардиографическими (электроды ЭКГ). Они выполняют роль контакта с поверхностью тела и таким образом замыкают электрическую цепь между генератором биопотенциалов и устройством измерения.
Автоматический анализ электрокардиосигналов в кардиомониторах предъявляет жесткие требования к устройствам съема — электродам ЭКГ. От качества электродов зависит достоверность результатов анализа, и следовательно, степень сложности средств, применяемых для обнаружения сигнала на фоне помех. Низкое качество съема ЭКС практически не может быть скомпенсировано никакими техническими решениями.
Требования, применяемые к электродам ЭКГ, соответствуют основным требованиям к любым преобразователям биоэлектрических сигналов:
· по точности восприятия сигнала (минимальные потери полезного сигнала на переходе электрод—кожа и сохранение частотной характеристики сигнала);
· идентичность электрических и конструктивных параметров (взаимозаменяемость, возможность компенсации электрических параметров);
· постоянство во времени функций преобразования (стабильность электрических параметров);
· низкому уровню шумов (обеспечение необходимого соотношения сигнал—шум).
· малому влиянию характеристик электродов на измерительное устройство.
Как показало применение первых кардиомониторов, обычные пластинчатые электроды ЭКГ, широко используемые в ЭКГ, не удовлетворяют требованиям длительного непрерывного контроля ЭКС из-за большого уровня помех при съеме.
Эхокардиографией называется метод изучения строения и движения структур сердца с помощью отраженного ультразвука. Получаемое при регистрации изображение сердца называется эхокардиограммой (ЭхоКГ). Впервые ЭхоКГ была зарегистрирована в 1954 г. шведскими учеными Эдлером и Херцем; свое современное название метод получил в 1965 г. по предложению Американского института ультразвука в медицине.
Физические принципы метода основаны на том, что ультразвуковые волны проникают в ткань и частично в виде эхосигнала отражаются от границ различной плотности. Волны ультразвуковой частоты генерируются датчиком, обладающим пьезоэлектрическим эффектом и устанавливаемым над областью сердца, отраженные от структур сердца эхосигналы вновь превращаются датчиком в электрический импульс, который усиливается, регистрируется и анализируется на экране видеомонитора. Одновременно полученные результаты могут фиксироваться на фотопленке, специально химически обработанной бумаге или с помощью поляроидной камеры в виде фотоизображений. Частота ультразвуковых волн, используемых в эхокардиографии, колеблется от 2 до 5 МГц, длина — 0,7-1,4 мм; они проникают в тело на глубину 20-25 см. Датчик работает в импульсном режиме: 0,1% времени — как излучатель, 99,9% — как приемник импульсов. Такое соотношение времени передачи и приема импульсов позволяет вести непрерывное наблюдение на экране видеомонитора. Для выделения отдельных фаз сердечного цикла синхронно с ЭхоКГ регистрируются ЭКГ, ФКГ или сфигмограмма.
В настоящее время помимо одномерной эхокардиографии, позволяющей анализировать строение и движение структур сердца — М-режим (от лат. motio — движение), используется двумерная в реальном масштабе времени и начинается применение трехмерной, объемной, эхокардиографии.
Фонокардиография представляет собой метод графической регистрации звуковых процессов, возникающих при деятельности сердца.
Фонокардиограф является аппаратом, регистрирующим звуковые процессы сердца. Обычно одновременно с фонокардиограммой (ФКГ) регистрируется ЭКГ, позволяющая четко определить систолический и диастолический интервалы.
Фонокардиограф любого типа состоит из микрофона, электронного усилителя, фильтров частот и регистрирующего устройства. Микрофон преобразует звуковую энергию в электрические сигналы. Он должен обладать максимальной чувствительностью, не вносить искажений в передаваемые сигналы и быть маловосприимчивым к внешним шумам. По способу преобразования звуковой энергии в электрические сигналы микрофоны фонокардиографов разделяются на пьезоэлектрические и динамические.
Принцип действия пьезоэлектрического микрофона основан на пьезоэлектрическом эффекте — возникновении разности при механической деформации некоторых кристаллов (кварца, сегнетовой соли и др.). Кристалл устанавливается и закрепляется в корпусе микрофона, чтобы под действием звуковых колебаний он подвергался деформации.
В настоящее время чаще используются динамические микрофоны. Принцип их действия основан на явлении электромагнитной индукции: при движении проводника в поле постоянного магнита в нем возникает э. д. с., пропорциональная скорости движения. На крышке микрофона наклеено кольцо из эластичной резины, благодаря чему микрофон плотно накладывается на поверхность грудной клетки. Через отверстия в крышке динамического микрофона звук воздействует на мембрану, сделанную из тончайшей прочной пленки. Соединенная с мембраной катушка перемещается в кольцевом зазоре магнитной системы микрофона, вследствие чего появляется э. д. с.
Электрический сигнал подается на усилитель в задачу которого входит не просто усилить все звуки в равной степени, а в большей мере усилить слабые высокочастотные колебания, соответствующие сердечным шумам, и в меньшей мере низкочастотные, соответствующие сердечным тонам. Поэтому весь спектр разбивается на диапазоны низких, средних и высоких частот. В каждом таком диапазоне обеспечивается необходимое усиление. Полную картину звуком сердца получают при анализе ФКГ, полученных в каждом диапазоне частот.
В отечественных приборах используются следующие частотные характеристики при записи ФКГ: А — аускультативная (номинальная частота 140±25 Гц), Н — низкочастотная (35±10 Гц), С1 — среднечастотная-1 (70±15 Гц), С2 — среднечастотная-2 (140±25 Гц), В — высокочастотная (250±50 Гц).
Для регистрации полученных сигналов используют регистрирующие системы, имеющие малую инерцию (оптическую или струйную).
- Заключение.
В данной работе была сделана попытка рассмотреть отдельные типы медицинских датчиков, изучить физические принципы их работы, познакомиться с конкретными марками и предприятиями-изготовителями. О трудностях, встреченных при написании этой работы было уже указано выше (введение). В процессе выполнения были получены навыки работы со справочной литературой, периодическими изданиями, использовались и электронные виды информации (internet).
8. Используемая литература.
1. Минкин Р. Б., Павлов Ю. Д. Электрокардиография и фонокардиография. —
Изд. 2-е, перераб. и дополн. — Л.: Медицина, 1988. — 256 с.
2. Виглеб Г. Датчики. Устройство и применение: Пер. с нем. — М. : Мир, 1989.
3. Бриндли К. Измерительные преобразователи./ Пер. с англ.- М.: Энергоатомиздат, 1991.
4. Окоси Т. и др. Волоконно-оптические датчики.
5. А. Бондер, А. В. Алферов - «Измерительные приборы»
При использовании материалов активная ссылка на источник обязательна.