Клинические анализы крови
Когда говорят об анализах крови, всегда нужно иметь в виду, что собственно кровь является только частью системы, включающей в себя еще органы кроветворения (костный мозг, селезенка, лимфотические узлы, печень) и кроверазрушения (селезенка, ткани). Все звенья в этой системе взаимосвязаны и взаимозависимы.
Костный мозг является органом, в котором рождаются и созревают клетки крови. Через определенное время клетки поступают в кровеносное русло, в котором эритроциты живут около 120 суток, тромбоциты — 10, а нейтрофилы всего около 10 часов. Причем, если эритроциты и тромбоциты функционируют в кровеносном русле, то гранулоциты (нейтрофилы, эозинофилы, базофилы) и макрофаги - еще и в тканях.
Подсчет количества клеточных элементов, который может производиться, как в ручную, с помощью микроскопа, так и автоматически, позволяет определить функциональное состояние костного мозга, диагностировать целый ряд заболеваний, связанных с нарушением его деятельности.
Кроме того, определяя количество эритроцитов, лейкоцитов, тромбоцитов и других элементов, концентрацию гемоглобина и скорость оседания эритроцитов (СОЭ), можно выявить наличие воспалительного заболевания (пневмонии, ревматизма, полиартрита, туберкулеза и др.).
Биохимические анализы крови и мочи
Биохимические анализы крови и других биологических жидкостей составляют около 40% всех лабораторных анализов. Они могут характеризовать как состояние всего организма, например, показатели кислотно-щелочного равновесия, так и отдельных органов, например, органоспецифические ферменты. Поскольку обмен веществ между органами и тканями опосредован кровотоком, в плазме крови содержатся в разных концентрациях все вещества, поступающие в организм и синтезирующиеся в нем. Аналитические возможности современных лабораторий практически сняли вопрос «как определить?», так как в настоящее время имеются возможности определять вещества, содержащиеся в биологическом материале в концентрациях 10-6-10-9 Моль на литр, а их перечень включает несколько сотен органических и неорганических компонентов.
При проведении биохимических анализов биологических жидкостей определяют, прежде всего, суммарную концентрацию всех белков, находящихся в сыворотке крови или в моче. В построении белковых молекул используется 20 различных аминокислот, последовательность и количество которых определяют размеры и свойства белка. В организме постоянно идут процессы «сборки» белковых молекул из аминокислот и «демонтаж» для образования энергии или выведения «ненужных» белков. Скорости этих процессов строго сбалансированы, и поэтому концентрация белков в сыворотке крови, тканях и органах строго сбалансирована. Патологическое снижение концентрации белка возникает при уменьшении его синтеза в печени (гепатит, церроз), нарушениях функции желудка или кишечника (воспаления, опухоли), при часто повторяющихся кровотечениях (желудочных, легочных, маточных и др.), при заболеваниях почек, сопровождающихся значительной потерей белка с мочой, при обширных ожогах, продолжительной рвоте, поносе, лихорадке.
В моче, напротив, белка быть не должно, или только его следы. Обнаружения белка в моче в небольших количествах возможно после длительных физических нагрузок, переохлаждения, преобладания белковой пищи.
Патологическое увеличение количества белка в моче (протеинурия) свидетельствует, в первую очередь, о заболевании почек – пиелонефрит, гломерулонефрит, почечная недостаточность и др., а также возможно при воспалении мочевого пузыря (цистите).
Исследования свертывающей системы крови
Кровь — уникальная жидкая ткань, обладающая не только текучестью, но и способностью свертываться (коагулировать), то есть сгущаться и образовывать плотные сгустки (тромбы). Свойство текучести предотвращает слипание клеток, и они легко перемещаются по всем сосудам, включая самые тонкие — капилляры. Благодаря свертывающей способности при повреждении мелких и средних сосудов кровотечение через некоторое время самостоятельно останавливается, так как брешь в сосуде закрывается тромбом. Как текучесть, так и свертываемость крови обеспечивается многими веществами и клетками, которые, взаимодействуя между собой, образуют систему гемостаза.
Расстройства гемостаза могут быть причинами самостоятельных заболеваний, но чаще всего они играют очень серьезную роль в течении, а иногда и в исходе других заболеваний, в первую очередь, травм, хирургических вмешательств, сердечно-сосудистых заболеваний, обширных воспалений, родов. Поэтому определение показателей свертывающей системы крови (гемостаза) является очень информативным для оценки состояния, прогноза и эффективной терапии многих острых и хронических заболеваний.
Система гемостаза включает 3 взаимосвязанных звена:
1. Сосудистый компонент
Слой клеток, выстилающий поверхность сосудов изнутри, — эндотелий — выделяет в кровь много веществ, которые не позволяют клеткам крови склеиваться и прилипать к стенкам сосудов. При повреждении или разрыве сосуда эндотелиальные клетки выделяют вещества, запускающие систему тромбообразования.
2. Клеточный (тромбоцитарный) компонент
В крови постоянно циркулируют мелкие клетки или кровяные пластинки — тромбоциты, от которых зависит начальный и конечный этап тромбообразования. При повреждении сосуда тромбоциты прикрепляются к месту разрыва, распластываются по поврежденной поверхности, склеиваются друг с другом, образуя комок из клеток — первичную гемостатическую пробку. Этот этап называется первичным или тромбоцитарным гемостазом, вслед за которым развивается каскад реакций, обеспечивающих уплотнение и прочное закрепление тромба в сосуде (вторичный гемостаз). Кроме этого, тромбоциты играют существенную роль в дальнейшем восстановлении целостности сосуда.
3. Плазменный компонент
Это большая группа белков, ферментов, ионы кальция, которые содержатся в плазме и функционально объединяются в: а) свертывающую плазму (коагуляционную); б) противосвертывающую (антикоагуляционную); в) фибринолитическую (плазминовую) систему.
Подробное описание системы гемостаза определяется не только ее сложностью, но и тем большим количеством лабораторных исследований, которые отражают ее состояние.
Исследования эндокринной системы
Железы внутренней секреции или эндокринные железы — гипофиз, эпифиз, щитовидная и паращитовидные железы, надпочечники, поджелудочная железа, мужские и женские половые железы — получили свое название в связи с тем, что выделяют синтезируемые ими вещества — гормоны — непосредственно в кровь. Это обеспечивается очень развитой сосудистой сетью желез.
Гормоны обладают высокой биологической активностью и способны в очень малых концентрациях оказывать значительное влияние на обмен веществ в клетках и через него на функции систем и органов, массу тела и, в определенной степени, на поведение. Гормоны действуют на ткани избирательно, что связано с неодинаковым количеством рецепторов и чувствительностью тканей к разным гормонам.
Продукция гормонов находится под контролем нервной системы, которая через гипоталамус осуществляет регуляцию синтеза гормонов в гипофизе. Гипоталамические гормоны либерины (кортиколиберин, соматолиберин и др.) оказывают активирующее влияние на гипофиз, а статины (соматостатин, меланостатин и др.) — тормозящее. Гипофиз секретирует большую группу так называемых тропных гормонов, каждый из которых регулирует синтез соответствующего гормона в периферической железе. Гормоны периферических желез, в частности мозгового слоя надпочечников, в свою очередь, контролируют секрецию гипоталамических гормонов. Благодаря такому тесному взаимному влиянию и контролю железы внутренней секреции образуют единую эндокринную систему. Поэтому повышение или снижение содержания гормона в организме может возникать не только из-за изменений в самой железе (опухоль, атрофия, склероз и др.), но и в результате нарушения регуляции со стороны других систем.
Лабораторные исследования играют важную роль в диагностике нарушений гормонального статуса, поскольку окончательный диагноз большинства эндокринных заболеваний может быть установлен только после проведения специальных тестов и функциональных проб. Получить информацию об активности эндокринной железы можно путем непосредственного определения уровня соответствующего гормона, промежуточных продуктов его синтеза или превращения, а, также, определяя биохимические, физиологические и другие параметры процессов, на которые влияет тот или иной гормон. Некоторые эндокринные нарушения возникают из-за образования антител к гормонам и веществам, участвующим в их образовании. В таких случаях определение уровня (титра) антител позволяет точно определить механизмы гормонального нарушения. В современных специализированных лабораториях широко используются радиоиммунологические методы определения гормонов, которые очень точны, специфичны, хотя и дороги.
Исследования иммунной системы
Человек постоянно находится в окружении огромного количества различных патогенных бактерий и вирусов, которые содержатся в воздухе, воде, почве, на окружающих предметах, продуктах питания и теле самого человека. Они могут вызывать множество заболеваний, но происходит это в течение жизни относительно редко, так как в организме имеется сложная система защиты от чужеродных агентов — иммунная система. Организм человека можно сравнить с государством, располагающим большой хорошо вооруженной армией — иммунитетом. Огромное число «солдат» — иммунокомпетентных клеток — циркулирует в крови, «патрулируя» все органы и ткани и ликвидируя не только инфекционные агенты (микробы, их токсины, вирусы и т.д.), но и очищая организм от патологически измененных, злокачественных, отмирающих и пересаженных клеток (органов). Таким образом, основной функцией иммунной системы является распознавание и уничтожение тел и веществ чужеродной природы.
Центральными органами иммунной системы являются костный мозг и тимус (вилочковая железа), основными периферическими — лимфатические узлы, миндалины, селезенка. В иммунной системе выделяют клеточное и гуморальное звено, которые в организме тесно взаимосвязаны.
Клеточное звено иммунитета включает лимфоциты и их производные - плазматические клетки, а также макрофаги, нейтрофилы, эозинофилы, базофилы и тучные клетки. Их количество определяется по общему количеству лейкоцитов в крови и по лейкоцитарной формуле (лейкограмме). Выявление иммунокомпрметированных лиц основывается на анализе данных анамнеза, результатов клинико-лабораторного и иммунологического обследования. Определение иммунного статуса человека включает комплекс анализов, дающих качественную и количественную характеристику клеточного и гуморального звена иммунитета. Частые инфекционно-воспалительные заболевания, их затяжное течение и возникающие после осложнения свидетельствуют о функциональных или структурных дефектах иммунной системы человека.
Исследования функции почек
Почка — парный орган, расположенный по обе стороны позвоночника в поясничной области. Функция почек многообразна. Почки участвуют в удалении конечных продуктов обмена веществ, чужеродных и ядовитых веществ, поступающих в организм из внешней среды, поддерживают постоянство в крови осмотически активных веществ, кислотно-щелочное равновесие, участвуют в регуляции водного баланса, продуцируют вещества, регулирующие артериальное давление, эритропоэз и т.д. В конечном итоге, основная функция почек — образование мочи. Механизм образования мочи сосредоточен в сложной почечной структуре, называемой нефроном.
Нефрон состоит из клубочка и извитых канальцев. Кровь, поступающая в клубочек, фильтруется и в извитых канальцах образуется первичная моча, по своему составу соответствующая сыворотке крови. Однако через этот фильтр крупномолекулярные белки не проходят. Из первичной мочи вода и некоторые растворенные в ней вещества всасываются и возвращаются в кровь. Оставшаяся сконцентрированная жидкость выводится из организма в виде мочи.
Таким образом, процесс образования мочи состоит: из фильтрации сыворотки крови, обратного всасывания воды и растворенных в ней веществ (реабсорбция) и канальцевой секреции.
Пробы, используемые для изучения функции почек, в одних случаях позволяют оценивать их способность концентрировать мочу и выводить воду, в других — характеризовать отдельные процессы, связанные с мочеобразованием (функцию клубочков, извитых канальцев, исследовать почечный кровоток и т.д.
Вместе с тем, исследования функциональной способности почек ничуть не умаляют диагностическое значение результатов, полученных при химическом и микроскопическом изучении мочи.
Исследования функции печени
Печень занимает центральное место в процессах обмена веществ организме человека. Большое количество крови, проходящее через печень, позволяет этому органу выделять в кровоток и извлекать из него многие биологические вещества. Выделение желчи — лишь одна из функций печени.
Печень участвует в синтезе белков, углеводов, жиров, в пигментном обмене, образовании мочевины, креатина и целого ряда других соединений. Велика роль печени в обезвреживании различных токсических веществ путем образования безвредных комплексов, удаляемых из организма через почки. Функции печени определяются с помощью проведения проб (проба с нагрузкой сахарами, проба на синтез гиппуровой кислоты, бромсульфалеиновая проба).
Маркеры опухолей
Маркеры опухолей — белки с углеводными или липидными компонентами, которые выявляются в опухолевых клетках или сыворотке крови, являются показателем злокачественного процесса в организме. Эти белки обладают равной степенью специфичности — одни могут появляться при нескольких видах опухолей разной локализации, другие — только при каком-то одном определенной злокачественном новообразовании. Различна частота их обнаружения и диагностическая значимость, так как в 10-15% случаев (для разных опухолей эти величины различны) белок-маркер может не выявляться при наличии опухоли.
Опухолевые маркеры используются для контроля за течением заболевания и эффективности проводимой химиотерапии, хирургического и биологического лечения. Динамическое наблюдение за уровнем опухолевого маркера позволяет делать заключение о полной остановке или прогрессировании процесса, появлении метастазов. Нередко повышение концентрации опухолевого маркера отмечается значительно раньше каких-либо клинических признаков заболевания. Определение маркеров опухолей хотя и дорогой, но очень важный метод исследования, без которого в ряде случаев обойтись просто невозможно.
Большинство лабораторных методов исследования требуют специального оборудования.
Так, для подготовки и сохранения проб при заданной температуре, а также проведения бактериологических и серологических исследований используют термостаты, а также холодильники (криостаты). Для поддержания температуры выше температуры окружающей среды пользуются жидкостными и воздушными термостатами. Теплоносителем в жидкостных термостатах является вода или масло, в воздушных — воздух. Водяные термостаты позволяют поддерживать температуру от 10 до 100°, масляные и воздушные — до 300°. Термостаты снабжены подогревающим и терморегулярующим устройствами, имеют внутреннюю камеру, куда помещают исследуемый материал или биологическую пробу. Камера заключена в рубашку, в которой циркулирует теплоноситель, подогреваемый электронагревательным элементом или охлаждаемый холодильной машиной. В медицине используют главным образом термостаты, поддерживающие более высокую температуру, чем в помещении. В практике заготовки крови, хранения органов и тканей для трансплантации, различного биологического материала используют криостаты, обеспечивающие сохранность материалов при пониженных температурах.
Для иммунобиологических исследований используют приспособления для разлива и разведения проб и реактивов, обеспечивающие одновременный разлив исследуемых проб в многоячейковые планшеты однократного применения.
При гистологических исследованиях применяют автоматы для гистологической обработки и окраски тканей, микротомы для получения тонких срезов препаратов, автоматы для фиксации и окраски мазков крови.
Технические средства для количественных и качественных исследований
К ним относят оптические визуальные и фотометрические приборы для регистрации колориметрических, поляриметрических и других световых характеристик различных растворов, суспензий и эмульсий: колориметры, фотоколориметры, нефелометры, поляриметры, фотометры, спектрофотометры и др. Колориметры служат для определения светопоглощения в различных участках светового спектра. Визуальные колориметры позволяют исследователю сравнить проходящий через исследуемый объект световой поток с эталоном в определенном световом диапазоне; подбирая наиболее близкий по окраске эталон, определяют концентрацию данного вещества в пробе. Современные колориметрические приборы (фотометры, спектрофотометры) принципиально устроены так же, но в них световой поток, проходя через исследуемый раствор, улавливается не визуально, а фоточувствительным элементом, в котором возникшая электродвижущая сила прямо пропорциональна силе светового потока. По заранее построенному графику зависимости светопоглощения от концентрации исследуемого вещества определяют его содержание в исследуемой пробе. Для выделения необходимого участка светового диапазона в фотоколориметрах используют светофильтры, в спектрофотометрах с целью более строгого определения участков светового диапазона применяют, кроме того, монохроматоры, выделяющие очень узкий участок спектра. Эти методы основываются на том, что различные вещества имеют максимум светопоглощения в определенных участках спектра. Применение спектрофотометров, где более строго выделена опорная длина волны, обеспечивает возможность работы в ультрафиолетовой и инфракрасной областях спектра, что значительно расширило возможности фотометрических методик. Наибольшее распространение в мед. практике получили фотоэлектроколориметры, фотоэлектроколориметры-нефелометры, микроколориметры. Фотоколориметры в качестве измерительных приборов встраивают в биохимические автоанализаторы, которые обеспечивают определение многих показателей в автоматическом режиме.
Наиболее широко распространенными приборами для морфологических исследований (определения формы, размеров, строения тканей, клеток и других структур живого организма) являются различные микроскопы (см. Микроскоп).
В гематологических исследованиях применяются различные счетчики клеток крови, например, для измерения концентрации эритроцитов и лейкоцитов в суспензиях крови - кондуктометрические гемоцитометры, для определения концентрации гемоглобина в крови - фотоэлектрические гемоглобинометры, автоанализаторы морфологические и др. Эти и аналогичные им приборы в крупных лабораториях диагностических центров заменили трудоемкие процессы подсчета клеток крови и определения содержания гемоглобина, распределения клеток по размерам и т. д. Для определения групповой и резус-принадлежности крови, проведения серологических реакций используют различные автоматизированные устройства. Для исследования свертывающей системы крови применяют самопишущий переносной коагулограф, а для определения минерального состава биологических проб — пламенные фотометры. В небольших лабораториях для исследования крови часто пользуются простейшими устройствами: камерой Горяева для счета форменных элементов крови, лабораторным счетчиком для подсчета различных клеток крови (лейкоцитарной формулы) при микроскопическом исследовании, штативом и пипетками для определения СОЭ, капиллярным гемовискозиметром для определения вязкости крови и др.
Оснащение современных лабораторий автоматизированными и механизированными устройствами постепенно вытесняет ручные и визуальные методы исследования, обеспечивает более высокую точность и воспроизводимость результатов определений, увеличивает производительность труда лаборантов, что особенно важно в связи с постоянным ростом числа выполняемых в лабораториях анализов, появлением новых методик и расширением количества исследуемых показателей.
Страницы: 1, 2