Рефераты. Кардиография

Один из аппаратов — кардиокассета фирмы «Cardiodyne» (США) —может быть запрограммирован на автоматическое вклю­чение в периоды 3, 5, 7, 14 или 28 с с интервалами между включе­ниями 15, 30, 60, 120 мин. Прибор может работать непрерывно по заданной программе в течение недели или больше. Его можно но­сить в кожаном футляре, перекидывая на ремне через плечо или прикрепляя к поясу. Электроды фиксируются с помощью липкого пластыря.

При записи ЭКГ применяют в большинстве случаев двухполюс­ные отведения, причем активным является красный электрод, ин­дифферентным — белый, а зеленый служит заземлением. Для выявления нарушений коронарного кровообращения красный электрод помещают в пятом межреберье слева по среднеключичной или передней подмышечной линии, белый — над рукояткой грудины или под ключицей справа и зеленый — над V или VI реб­ром справа по среднеключичной линии. Получают видоизменен­ное отведение V4. Для диагностики аритмий лучше помещать крас­ный электрод на нижнюю часть грудины вблизи от мечевидного отростка, белый — над рукояткой грудины, зеленый — над V реб­ром по среднеключичной линии. Это видоизменное отведение V1. При таком расположении электродов лучше выявляется зубец Р.

Записанную па магнитную ленту ЭКГ в последующем воспро­изводят с помощью обычного электрокардиографа и подвергают тщательному анализу. Можно воспроизвести ее на экране любого осциллоскопа, например векторэлектрокардиоскопа. При обнару­жении на осциллоскопе патологических изменении ЭКГ их можно зарегистрировать на обычном электрокардиографе. Кроме того, обработка магнитной ленты может быть произведена с помощью ЭВМ с подробным анализом ее. При анализе ЭКГ врач может быстро определить, связаны ли жалобы больных с нарушениями сердечной деятельности и каков характер этих нарушений.

Запись ЭКГ с помощью портативного электрокардиографа поз­воляет проводить длительную амбулаторную регистрацию ЭКГ во время обычной деятельности больного: физической нагрузки, профессиональной деятельности, отдыха, сна, во время занятий спор­том и т. д.

Запись ЭКГ на магнитную ленту с помощью портативного маг­нитофона можно рекомендовать для регистрации преходящих на­рушений ритма и проводимости, для оценки применяемой противоаритмической терапии, для диагностики и оценки нарушений рит­ма и проводимости у больных острым инфарктом миокарда и влия­ния на них антиаритмических средств. Кроме того, ее можно использовать при постоянных формах нарушения ритма для оцен­ки влияния на них различных бытовых и профессиональных фак­торов, имеющихся в повседневной жизни больного. Иногда такая методика записи ЭКГ применяется при проведении пробы с фи­зической нагрузкой. Длительная регистрация ЭКГ помогает также в выявлении скрытой коронарной недостаточности, а также фак­торов, вызывающих ухудшение ЭКГ во время обычной повседнев­ной жизни больного, у больных с заведомо имеющейся ишемической болезнью сердца.

Непрерывное длительное наблюдение ЭКГ с помощью мониторов. Современные мониторы предоставляют возможность длительно­го наблюдения за ЭКГ на экране осциллоскопа. Для регистрации ЭКГ используют при этом различные отведения: стандартные, грудные, отведения по Небу и т. д. Длительное электрокардиогра­фическое наблюдение (в течение нескольких часов или дней) в ос­новном используется для диагностики различных нарушений рит­ма и проводимости. При появлении на экране осциллоскопа арит­мии ее можно зарегистрировать с помощью электрокардиографа. Большинство современных мониторных установок имеет специаль­ное сигнальное устройство — сигнал тревоги, которое автоматиче­ски включается (свет или звук) при появлении аритмии, значи­тельном замедлении или учащении ритма. В некоторых аппара­тах одновременно автоматически производится запись ЭКГ.

Мониторное электрокардиографическое наблюдение наиболее часто используют при остром инфаркте миокарда. Его проводят обычно в отделениях или палатах интенсивной терапии в первые дни после возникновения инфаркта, при наличии преходящих нарушений ритма и проводи­мости, которые требуют срочных терапевтических мероприятий, а также для уточнения диагноза аритмии. Кроме того, его ис­пользуют иногда при проведении массивной противоаритмической или сердечной терапии, а также при применении отдельных диаг­ностических процедур, которые могут приводить к возникновению аритмий (например, проба с физической нагрузкой, зондирование сердца, ангиокардиография и т. д.). Нередко ЭКГ записывают на магнитную ленту, что позволяет вводить и анализировать ЭКГ с помощью ЭВМ.

Современная медицина базируется на широком использовании разнообразной аппаратуры, которая в большинстве своем является физической по конструкции. Поэтому в курсе медицинской и биологической физике рассматриваются устройство и принципы работы основной медицинской аппаратуры.


2. БИОЭЛЕКТРИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОКАРДИОГРАФИИ

2.1 МЕМБРАННАЯ ТЕОРИЯ ВОЗНИКНОВЕНИЯ БИОПОТЕНЦИАЛОВ

В основе возникновения электрических явлений в сердце лежит, как известно, проникновение ионов калия (К+), натрия (Na+), кальция (Са 2+), хлора (СГ) и др. через мембрану мышечной клетки. В электрохимическом отношении клеточная мембрана представляет собой оболочку, обладающую разной проницаемостью для различных ионов. Она как бы разделяет два раствора электролитов, существенно отличающихся по своему составу. Внутри клетки, находящейся в невозбужденном состоянии, концентрация К+ в 30 раз выше, чем во внеклеточной жидкости. Наоборот, во внеклеточной среде примерно в 20 раз выше концентрация Na+, в 13 раз выше концентрация СГ и в 25 раз выше концентрация Са2+ по сравнению с внутриклеточной средой. Такие высокие градиенты концентрации ионов по обе стороны мембраны поддерживаются благодаря функционированию в ней ионных насосов, с помощью которых ионы Na, Ca и Сl выводятся из клетки, а ионы К входят внутрь клетки. Этот процесс осуществляется против концентрационных градиентов этих ионов и требует затраты энергии.

                      А                                          Б

Клетка миокарда в покое (А)  и во время деполяризации  (Б).

 

В невозбужденной клетке мембрана более проницаема для К+ и СГ. Поэтому ионы К+ в силу концентрационного градиента стремятся выйти из клетки, перенося свой положительный заряд во внеклеточную среду. Ионы СГ, наоборот, входят внутрь клетки, увеличивая тем самым отрицательный заряд внутриклеточной жидкости. Это перемещение ионов и приводит к поляризации клеточной мембраны невозбужденной клетки: наружная ее поверхность становится положительной, а внутренняя - отрицательной. Возникающая таким образом на мембране разность потенциалов препятствует дальнейшему перемещению ионов (К - из клетки и С1 - в клетку), и наступает стабильное состояние поляризации мембраны клеток сократительного миокарда в период диастолы. Если мы теперь с помощью микроэлектродов измерим разность потенциалов между наружной и внутренней поверхностью клеточной мембраны, то зарегистрируем так называемый трансмембранный потенциал покоя (ТМПП), имеющий отрицательную величину, в норме составляющую около - 90 mV.

При возбуждении клетки резко изменяется проницаемость ее стенки по отношению к ионам различных типов. Это приводит к изменению ионных потоков через клеточную мембрану и, следовательно, к изменению величины самого ТМПП. Кривая изменения трансмем­бранного потенциала во время возбуждения получила название трансмембранного потенциала действия (ТМПД). Различают несколько фаз ТМПД миокардинальной клетки (рисунок 1).

 Фаза 0. Во время этой начальной фазы возбуждения - фазы деполяризации - резко увеличивается проницаемость мембраны клетки для ионов Na, которые быстро устремляются внутрь клетки (быстрый натриевый ток). При этом, естественно, меняется заряд мембраны: внутренняя поверхность мембраны становится положительной, а наружная - отрицательной. Величина ТМПД изменяется от -90 mV до +20 mV, т.е. происходит реверсия заряда - перезарядка мембраны. Продолжительность этой фазы не превышает 10 мс.

Фаза 1. (фаза начальной быстрой реполяризации) Как только величина ТМПД достигает примерно +20 mV, проницаемость мембраны для Na+ уменьшается, а для СГ. Это приводит к возникновению небольшого тока отрицательных ионов С1 внутри клетки, которые частично нейтрализуют избыток положительных ионов Na внутри клетки, что ведет к некоторому падению ТМПД примерно до 0 или ниже.






Рисунок 1. Трансмембранный потенциал действия (ТМПД). АРП и ОРП - абсолютный и относительный рефракторный периоды.


Фаза 2. (фаза плато) В течение этой фазы величина ТМПД поддерживается примерно на одном уровне, что приводит к формированию на кривой ТМПД своеобразного плато. Постоянный уровень величины ТМПД поддерживается при этом за счет медленного входящего тока Са2+ и Na+ направленного внутрь клетки, и тока К+ из клетки. Продолжительность этой фазы велика и составляет около 200 мс. В течение фазы 2 мышечная клетка остается в возбужденном состоянии, начало ее характеризуется деполяризацией, окончание - реполяризацией мембраны.

Фаза 3. (конечной быстрой реполяризации) К началу фазы 3 резко уменьшается проницаемость клеточной мембраны для Na+ и Са2+ и значительно возрастает проницаемость ее для К+. Поэтому вновь начинает преобладать перемещение ионов К наружу из клетки, что приводит к восстановлению прежней поляризации клеточной мембраны, имевшей место в состоянии покоя: наружная ее поверхность вновь оказывается заряженной положительно, а внутренняя поверхность - отрицательно. ТМПД достигает величины ТМПП.

Фаза 4. (фаза диастолы) Во время этой фазы ТМПД происходит восстановление исходной концентрации К+, Na+, Ca2+, СГ соответственно внутри и вне клетки благодаря действию «Na+ - K+ -насоса». При этом уровень ТМПД мышечных клеток остается на уровне примерно - 90 mV.

Клетки проводящей системы сердца и клетки синусового узла обладают способностью к спонтанному медленному увеличению ТМПП - уменьшению отрицательного заряда внутренней поверхности мембраны во время фазы 4. Этот процесс получил название спонтанной диастолической деполяризации и лежит в основе автоматической активности клеток синоатриального (синусового) узла и проводящей системы сердца, т. е. способности к «самопроизвольному» зарождению в них электрического импульса.

Наружная поверхность клеточной мембраны заряжена:

1) положительно - в невозбужденной мышечной клетке, находящейся
в состоянии покоя;

2)     отрицательно - в клетке, находящейся в состоянии возбуждения в
фазе 0 и 1 ТМПД (деполяризация и ранняя быстрая реполяризация);

3) положительно - в клетке, восстанавливающей свой исходный
потенциал (реполяризация клетки).


2.2 ОСНОВНЫЕ ФУНКЦИИ СЕРДЦА

Сердце   обладает   рядом   функций,   определяющих   особенности   его работы.

1) Функция автоматизма

Функция автоматизма заключается в способности сердца вырабатывать электрические импульсы при отсутствии внешних раздражений.

Функцией автоматизма обладают клетки синоатриального узла (СА-узла) и проводящей системы сердца: атриовентрикулярного соединения (АВ-соединения), проводящей системы предсердий и желудочков. Они получили название клеток водителей /пейсмекеров (от англ., pacemaker— водитель). Сократительный миокард лишен функции ав­томатизма.

Если в норме ТМПД сократительных мышечных клеток в течение всей диастолической фазы (фазы 4 ТМПД) стабильно поддерживается на одном и том же уровне, равном примерно-90 mV, то для волокон водителей
ритма (пейсмекеров) характерно медленное спонтанное уменьшение
мембранного потенциала в диастолу, как это показано на рисунке 2. Этот
процесс носит название медленной спонтанной диастолической  деполяризации  и   возникает в результате особых свойств    мембраны    пейсмекеров   -   постепенного    самопроизвольного увеличения в диастолу проницаемости мембраны для ионов Na, медленно входящих  в  клетку.  В  результате  скопления  в  клетке  все  большего количества   положительных   ионов   отрицательный   заряд   внутренней поверхности клеточной мембраны частично нейтрализуется, и разность потенциалов между наружной и внутренней поверхностью мембраны (ТМПП)   постепенно   уменьшается.   Как   только   ТМПП   достигнет критического уровня (примерно 60 mV)9 проницаемость мембраны для ионов Na резко и быстро возрастает, что приводит к возникновению быстрой лавинообразной деполяризации клетки (фаза О ТМПД) - ее возбуждению,   которая   является   импульсом   к   возбуждению  других клеток миокарда.   Критический потенциал покоя

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.