Рефераты. Интраоперационный мониторинг

Противопоказания

Следует по возможности воздерживаться от катетеризации, если отсутствует документальное подтверждение сохранности коллатерального кровотока, а также при подозрении на сосудистую недостаточность (например, синдром Рейно).

Методика и осложнения

А. Выбор артерии для катетеризации. Для чрескожной катетеризации доступен ряд артерий.

1. Лучевую артерию катетеризируют чаще всего, так как она располагается поверхностно и имеет коллатерали. Тем не менее, у 5 % людей артериальные ладонные дуги оказываются незамкнутыми, что делает коллатеральный кровоток неадекватным. Проба Аллена — простой, хотя и не вполне достоверный способ определения адекватности коллатерального кровообращения по локтевой артерии при тромбозах лучевой артерии. Вначале больной несколько раз энергично сжимает и разжимает кулак, пока кисть не побледнеет; кулак остается сжатым. Анестезиолог пережимает лучевую и локтевую артерии, после чего больной разжимает кулак. Коллатеральный кровоток через артериальные ладонные дуги считается полноценным, если большой палец кисти приобретает первоначальную окраску не позже чем через 5 с после прекращения давления на локтевую артерию. Если восстановление первоначального цвета занимает 5-10 с, то результаты теста нельзя трактовать однозначно (иначе говоря, коллатеральный кровоток "сомнителен"), если больше 10 с — то существует недостаточность коллатерального кровотока. Альтернативными методами определения артериального кровотока дистальнее места окклюзии лучевой артерии могут быть пальпация, допплеровское исследование, плетизмография или пульсоксиметрия. В отличие от пробы Аллена, для этих способов оценки коллатерального кровотока не требуется содействие самого больного.

2. Катетеризацию локтевой артерии технически сложнее проводить, так как она залегает глубже и более извита, чем лучевая. Из-за риска нарушения кровотока в кисти не следует катетеризировать локтевую артерию, если ипсилатеральная лучевая артерия была пунктирована, но катетеризация не состоялась.

3. Плечевая артерия крупная и достаточно легко идентифицируется в локтевой ямке. Так как по ходу артериального дерева она расположена недалеко от аорты, то конфигурация волны искажается лишь незначительно (по сравнению с формой пульсовой волны в аорте). Близость локтевого сгиба способствует перегибанию катетера.

4. При катетеризации бедренной артерии высок риск формирования псевдоаневризм и атером, но часто только эта артерия остается доступной при обширных ожогах и тяжелой травме. Асептический некроз головки бедренной кости — редкое, но трагическое осложнение при катетеризации бедренной артерии у детей.

5. Тыльная артерия стопы и задняя больше-берцовая артерия находятся на значительном удалении от аорты по ходу артериального дерева, поэтому форма пульсовой волны существенно искажается. Модифицированная проба Аллена позволяет оценить адекватность коллатерального кровотока перед катетеризацией этих артерий.

6. Подмышечная артерия окружена подмышечным сплетением, поэтому существует риск повреждения нервов иглой или в результате сдавления гематомой. При промывании катетера, установленного в левой подмышечной артерии, воздух и тромбы будут быстро попадать в сосуды головного мозга.

Б. Методика катетеризации лучевой артерии.

Супинация и разгибание кисти обеспечивают оптимальный доступ к лучевой артерии. Предварительно следует собрать систему катетер-магистраль-преобразователь и заполнить ее гепаринизированным раствором (примерно 0,5-1 ЕД гепарина на каждый мл раствора), т. е. подготовить систему для быстрого подключения после катетеризации артерии.

Путем поверхностной пальпации кончиками указательного и среднего пальцев недоминантной руки анестезиолог определяет пульс на лучевой артерии и ее расположение, ориентируясь на ощущение максимальной пульсации. Кожу обрабатывают йодоформом и раствором спирта и через иглу 25-27-го размера инфильтрируют 0,5 мл лидокаина в проекции артерии. Тефлоновым катетером на игле 20-22-го размера прокалывают кожу под углом 45°, после чего продвигают его по направлению к точке пульсации. При появлении крови в павильоне угол вкола иглы уменьшают до 30° и для надежности продвигают вперед еще на 2 мм в просвет артерии. Катетер вводят в артерию по игле, которую затем удаляют. Во время подсоединения магистрали артерию пережимают средним и безымянным пальцами проксимальнее катетера, чтобы предотвратить выброс крови. Катетер фиксируют к коже водоустойчивым лейкопластырем или швами.

В. Осложнения. К осложнениям интраартериального мониторинга относятся гематома, спазм артерии, тромбоз артерии, воздушная эмболия и тромбоэмболия, некроз кожи над катетером, повреждение нервов, инфекция, потеря пальцев (вследствие ишемического некроза), непреднамеренное внутриартериальное введение препаратов. Факторами риска являются длительная катетеризация, гиперлипидемия, многократные попытки катетеризации, принадлежность к женскому полу, применение экстракорпорального кровообращения, использование вазопрессоров. Риск развития осложнений снижают такие меры, как уменьшение диаметра катетера по отношению к просвету артерии, постоянная поддерживающая инфузия раствора гепарина со скоростью 2-3 мл/ч, уменьшение частоты струйных промываний катетера и тщательная асептика. Адекватность перфузии при катетеризации лучевой артерии можно непрерывно контролировать путем пульсоксиметрии, размещая датчик на указательном пальце ипсилатеральной кисти.

Клинические особенности

Поскольку внутриартериальная катетеризация обеспечивает длительное и непрерывное измерение давления в просвете артерии, эта методика считается "золотым стандартом" мониторинга артериального давления. Вместе с тем качество преобразования пульсовой волны зависит от динамических характеристик системы катетер-магистраль-преобразователь. Ошибка в результатах измерения артериального давления чревата назначением неправильного лечения.

Пульсовая волна в математическом отношении является сложной, ее можно представить как сумму простых синусоидных и косинусоидных волн. Методика преобразования сложной волны в несколько простых называется анализом Фурье. Чтобы результаты преобразования были достоверными, система катетер-магистраль-преобразователь должна адекватно реагировать на самые высокочастотные колебания артериальной пульсовой волны. Иными словами, естественная частота колебаний измеряющей системы должна превышать частоту колебаний артериального пульса (приблизительно 16-24 Гц).

Кроме того, система катетер-магистраль-преобразователь должна предотвращать гиперрезонансный эффект, возникающий в результате реверберации волн в просвете трубок системы. Оптимальный демпинговый коэффициент (β) составляет 0,6-0,7. Демпинговый коэффициент и естественную частоту колебаний системы катетер-магистраль-преобразователь можно рассчитать при анализе кривых осцилляции, полученных при промывании системы под высоким давлением.

Уменьшение длины и растяжимости трубок, удаление лишних запорных кранов, предотвращение появления воздушных пузырьков — все эти мероприятия улучшают динамические свойства системы. Хотя внутрисосудистые катетеры малого диаметра снижают естественную частоту колебаний, они позволяют улучшить функционирование системы с низким демпинговым коэффициентом и уменьшают риск возникновения сосудистых осложнений. Если катетер большого диаметра окклюзирует артерию полностью, то отражение волн приводит к ошибкам в измерении артериального давления.

Преобразователи давления эволюционировали от громоздких приспособлений многократного использования к миниатюрным одноразовым датчикам. Преобразователь превращает механическую энергию волн давления в электрический сигнал. Большинство преобразователей основано на принципе измерения напряжения: растяжение проволоки или силиконового кристалла изменяет их электрическое сопротивление. Чувствительные элементы расположены как контур мостика сопротивления, поэтому вольтаж на выходе пропорционален давлению, воздействующему на диафрагму.

От правильной калибровки и процедуры установки нулевого значения зависит точность измерения артериального давления. Преобразователь устанавливают на желаемом уровне — обычно это среднеподмышечная линия, открывают запорный кран, и на включенном мониторе высвечивается нулевое значение артериального давления. Если во время операции положение больного изменяют (при изменении высоты операционного стола), то преобразователь необходимо переместить одновременно с больным или переустановить нулевое значение на новом уровне среднеподмышечной линии. В положении сидя артериальное давление в сосудах головного мозга, существенно отличается от давления в левом желудочке сердца. Поэтому в положении сидя артериальное давление в сосудах мозга определяют, установив нулевое значение на уровне наружного слухового прохода, что приблизительно соответствует уровню виллизиева круга (артериального круга большого мозга). Преобразователь следует регулярно проверять на предмет "дрейфа" нуля — отклонения, обусловленного изменением температуры.

Наружное калибрование заключается в сравнении значений давления преобразователя с данными ртутного манометра. Ошибка измерения должна находиться в пределах 5 %; если ошибка больше, то следует отрегулировать усилитель монитора. Современные преобразователи редко нуждаются в наружном калибровании.

Цифровые значения АДсист. и АДдиаст. являются средними значениями соответственно наиболее высоких и наиболее низких показателей артериального давления за определенный период времени. Так как случайное движение или работа электрокаутера могут искажать значения артериального давления, то необходим мониторинг конфигурации пульсовой волны. Конфигурация пульсовой волны предоставляет ценную информацию о гемодинамике. Так, крутизна подъема восходящего колена пульсовой волны характеризует сократимость миокарда, крутизна спуска нисходящего колена пульсовой волны определяется общим периферическим сосудистым сопротивлением, значительная вариабельность размеров пульсовой волны в зависимости от фазы дыхания указывает на гиповолемию. Значение АДср. рассчитывают с помощью интегрирования площади под кривой.

Внутриартериальные катетеры обеспечивают возможность частого анализа газов артериальной крови.

В последнее время появилась новая разработка — волоконно-оптический датчик, вводимый в артерию через катетер 20-го размера и предназначенный для длительного непрерывного мониторинга газов крови. Через оптический датчик, кончик которого имеет флюоресцентное покрытие, передается свет высокой энергии. В результате флюоресцентный краситель испускает свет, волновые характеристики которого (длина и интенсивность волны) зависят от рН, PCO2 и PO2 (оптическая флюоресценция). Монитор определяет изменения флюоресценции и отражает на дисплее соответствующие значения газового состава крови. К сожалению, стоимость этих датчиков высока.

ЛИТЕРАТУРА

1.     «Неотложная медицинская помощь», под ред. Дж. Э. Тинтиналли, Рл. Кроума, Э. Руиза, Перевод с английского д-ра мед. наук В.И.Кандрора, д. м. н. М.В.Неверовой, д-ра мед. наук А.В.Сучкова, к. м. н. А.В.Низового, Ю.Л.Амченкова; под ред. Д.м.н. В.Т. Ивашкина, Д.М.Н. П.Г. Брюсова; Москва «Медицина» 2001

2.     Интенсивная терапия. Реанимация. Первая помощь: Учебное пособие / Под ред. В.Д. Малышева. — М.: Медицина.— 2000.— 464 с.: ил.— Учеб. лит. Для слушателей системы последипломного образования.— ISBN 5-225-04560-Х


Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.