Рефераты. Допплеровский измеритель скорости кровотока

Так как в рассматриваемом помещениии нет повышенной опасности поражения электрическим током, то в качестве технической меры защиты используется защитное заземление.

В рассматриваемом помещении находится применяемое в работе компьютерное оборудование (системные блоки, мониторы, принтер, источники питания), а также медицинское оборудование которое может стать причиной поражения человека электрическим током.

Защитным заземлением называется преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно применяется в сетях с изолированной нейтралью напряжением до 1000 В и при любом режиме нейтрали в сетях напряжением выше 1000 В. Защитное заземление уменьшает напряжение на корпусе относительно земли до безопасного значения, следовательно, уменьшается и ток, протекающий через тело человека

Характеристика помещения по пожаробезопасности.

Для помещений с ЭВМ, не содержащих опасных легко воспламеняющихся материалов,

категория пожарной опасности принимается - В.

Для лаборатории должны выполняться все нормы в соответствии со СанПиН 2.09.02-85. Согласно этому помещение оснащается пожарной сигнализацией для оповещения персонала здания о своевременной эвакуации. Система эвакуации предусматривается стандартной в многоэтажном здании с коридорной системой.

В результате проведенного анализа было выявлено что параметры микроклимата не соответствуют санитарным нормам. Для устранения вредного фактора выбирается кондиционирование воздуха.

Кондиционирование воздуха

Согласно СНиП 2.04.05-91 вентиляцию, воздушное отопление и воздушно-тепловые завесы следует предусматривать для обеспечения допустимых метеорологических условий и чистоты воздуха в обслуживаемой или рабочей зоне помещений (на постоянных и непостоянных рабочих местах).

Кондиционирование следует предусматривать для обеспечения нормируемой чистоты и метеорологических условий воздуха в обслуживаемой или рабочей зоне помещения или отдельных его участков.

Кондиционирование воздуха следует принимать:

 -  первого класса - для обеспечения метеорологических условий, требуемых для технологического процесса, при экономическом обосновании или в соответствии с требованиями нормативных документов;

  - второго класса - для обеспечения метеорологических условий в пределах оптимальных норм или требуемых для технологических процессов;

скорость движения воздуха допускается принимать в обслуживаемой зоне, на постоянных и непостоянных рабочих местах в пределах допустимых норм;

- третьего класса - для обеспечения метеорологических условий в пределах допустимых норм, если они не могут быть обеспечены вентиляцией в теплый период года без применения искусственного охлаждения воздуха, или оптимальных норм - при экономическом обосновании.

Обычно для обеспечения заданных параметров микроклимата целесообразно использовать вентиляцию, однако в нашем случае это не возможно из-за ряда особенностей рабочего помещения (лаборатория, медицинское оборудование и тп), поэтому мы будем использовать кондиционирование.

Полезную производительность системы кондиционирования воздуха (СКВ) определяют по максимальным избыточным тепловым потокам в помещении в теплый период года по формуле:

                                                                            (1)

где       L - объем приточного воздуха, м3;

            c - теплоемкость воздуха, принимается 1,005 кДж/кг×0С;

            pн - плотность приточного воздуха, принимается 1,2 кг/м3;

            tу, tп - температура уходящего и приходящего воздуха,0С;

            Qизб - теплоизбытки, кДж/ч.

В помещении лаборатории имеются теплоизбытки:

Qизб=Qоб+Qл+Qосв+Qрад,                                                                     (2)

где       Qоб - выделение тепла от оборудования;

Qл - поступление тепла от людей;

Qосв - поступление тепла от электрического освещения;

Qрад - поступление тепла от солнечной радиации.

     Выделение тепла от оборудования:

Qоб=3600×N×y1×y2,                                                                              (3)

где

y1 - коэффициент использования установочной мощности, принимается 0,95;

y2 - коэффициент одновременности работы, принимаем 1;

N - суммарная установочная мощность, для данной комнаты принимается 1 кВт.

Qоб=3600×1×0,95×1=3420 кДж/ч.

Поступление тепла от людей:

Qл=3600 n×q,                                                                                       (4)

где       n - количество людей, работающих в помещении;

q - количество тепла, выделенного одним человеком, принимается 545 кДж/ч.

Qл=4×545=2180 кДж/ч.

От электрического освещения поступление тепла:

Qосв=3600×N×k1×k2,                                                                               (5)

где       N - суммарная установочная мощность светильников, кВт;

k1, k2 - коэффициенты, учитывающие способ установки светильников и особенности светильников, принимаются k1=0,35; k2=1,3.

Qосв=3600×4×0,04×0,35×1,3=262,08 кДж/ч.

Тепло, поступаемое от солнечной радиации:

Qрад=q×S,                                                                                             (6)

где

q - удельные поступления от солнечной радиации, принимаем 135 кДж/м2×ч;

            S - суммарная площадь окон, м2.

Qрад=135×6=810 кДж/ч.

Таким образом, в соответствии с формулами (1) и (2) расход воздуха:

L=(3420+2180+262,08+810)/[1,005×1,2×(20-15)] = 1106,48 м3/ч.

Определив значение требуемой производительности системы кондиционирования воздуха в помещении лаборатории, по справочнику подбираем необходимый кондиционер. Для нашей лаборатории подойдет кондиционер фирмы Toshiba JD-20 номинальной производительностью 1,5 тыс.м3/ч.

Вывод:

Анализ условий труда на рабочем месте показал, что параметры микроклимата не соответствуют принятым нормам. В качестве мероприятия по устранению влияния вредных факторов было выбрано кондиционирование. Был проведен расчет системы кондиционирования и выбран кондиционер.




6.     Заключение


            В ходе выполнения дипломного проекта мной был проведен анализ большого количества литературы и сделаны выводы о целесообразности применения приведенных в проекте решений. В аналитическом обзоре был проведен анализ существующих аналогов и направления развития допплеровских измерителей скорости кровотока. Показано, что наиболее рациональной глубиной для высокочастотных приборов, с точки зрения соотношения сигнал/шум и получения максимальной мощности отраженного сигнала, является глубина расположения исследуемых сосудов, меньшая, чем 0,5 см. Показано, что применяемые в качестве активных элементов существующих НЧ УЗ датчиков пьезоэлектрики вполне пригодны для построения УЗ допплеровских датчиков. В специальной части на основе анализа существующих структурных схем УЗ допплеровской аппаратуры разработана схема УЗ допплеровского комплекса. Для образца из пьезоэлектрического материала были произведены расчеты среза и изготовлен ультразвуковой высокочастотный допплеровский датчик для непрерывно-волнового режима работы. Рабочая частота разработанного датчика составила 2 МГц. На основе анализа существующих электрических схем была предложена электрическая схема и расчет её надежности. В экономической части был сделан вывод о целесообразности внедрения прибора в производство. В разделе безопасность жизнедеятельности был проведен анализ условий труда на рабочем месте, который показал, что параметры микроклимата не соответствуют принятым нормам. В качестве мероприятия по устранению влияния вредных факторов было выбрано кондиционирование. Был проведен расчет системы кондиционирования и выбран кондиционер. В технологической части были разработаны технические условия на проектируемое изделие, методика испытаний, а также был спроектирован испытательный стенд для изделия.



















7.     Литература:

1. Энергетическая допплерография - новая диагностическая технология визуализации кровотока. // В сб.: Новые диагностические технологии. Организация службы функциональной диагностики. - Москва. - 1996. - С.32 (соавт. В.П.Куликов).

2. Дуплексное сканирование сосудов с цветным картированием кровотока. // Методические рекомендации для врачей и студентов медицинских ВУЗов. Тип. АОЗТ “Диалог-Сибирь”. - г. Барнаул. -1996. - С. 84 (соавт. В.П.Куликов, А.В.Могозов, А.Н.Панов, С.О.Ромашин, Н.В. Устьянцева-Бородихина, Р.В. Янаков).

3. Сравнительная информативность ЦДК и ЭДК. // Новые методы функциональной диагностики (сборник научных трудов) - Барнаул. - 1997. - С.8 (соавт. Е.В.Граф, А.В.Могозов).

4. Диагностика патологии позвоночных артерий при помощи цветного допплеровского картирования и энергетической допплерографии. // В сб.: Новые методы функциональной диагностики. - Барнаул, 1997. - С.13-14 (соавт. А.В.Могозов, Н.Г.Хорев).

5. Шарапов А.А. Построение аппаратуры обработки данных на основе ЦПОС для доплеровского  индикатора  скорости  кровотока.  Микроэлектроника  и информатика - 97: Часть 1. М.:МГИЭТ (ТУ). 1997. - с. 127.

6. Шарапов А.А. Применение "высокочастотных" датчиков в УЗ допплерографии.// "Электроника и информатика - 97". В 2ч. Тезисы докладов. 4.1 - М.:

МГИЭТ(ТУ),1997.-с.217.

информатизации - 99. Доклады международной конференции Информационные средства и технологии, 19-21 октября 1999г. В 3-х т.т. т.1, с. 45 - 49.

7..П. Хоровиц, У. Хилл. Искусство схемотехники, т2. , Москва, «Мир» 1986.(RS232)

8. Р. Кофлин, Ф. Дрискол. Оперционные усилители и линейные интегральные схемы. Москва, «Мир», 1979.

9. Киясбейли А.Ш. «Частотно временные ультразвуковые расходомеры и счетчики» Москва, «Машиностроение», 1984

10. Макс Ж., «Методы и техника обработки сигналов при физических измерениях» В 2-х томах. Пер. с франц. – М.: Мир, 1983

11. Сотсков Б.С. «Расчет надежности»  Москва, «Машиностроение», 1984










16.                 Приложение

Данные об отечественных и зарубежных фирмах, производящих оборудование для диагностики нарушений кровообращения и измерения скорости кровотока.

«Биосс»

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.