Рефераты. Биологическая роль соединений, содержащих К+, Na+, их применение в фармации  


Скачок титрования: pH = 4-10. Максимальная ошибка в% - меньше 0.4.

Индикаторы - тимолфталеин, фенолфталеин.

Восстановитель, какие элементы периодической системы элементов могут быть восстановителями и почему?

Восстановитель - это вещество, которое в ходе реакции отдает электроны, т.е. окисляется.

Восстановителями могут быть нейтральные атомы, отрицательно заряженные ионы неметаллов, положительно заряженные ионы металлов в низшей степени окисления, сложные ионы и молекулы, содержащие атомы в состоянии промежуточной степени окисления.

Нейтральные атомы. Типичными восстановителями являются атомы, на внешнем энергетическом уровне которых имеется от 1 до 3 электронов. К этой группе восстановителей относятся металлы, т.е. s-, d - и f-элементы. Восстановительные свойства проявляют и неметаллы, например водород и углерод. В химических реакциях они отдают электроны.

Сильными восстановителями являются атомы с малым потенциалом ионизации. К ним относятся атомы элементов двух первых главных подгрупп периодической системы элементов Д.И. Менделеева (щелочные и щелочноземельные металлы), а также Аl, Fe и др.

В главных подгруппах периодической системы восстановительная способность нейтральных атомов растет с увеличением радиуса атомов. Так, например, в ряду Li - Fr более слабым восстановителем будет Li, а сильным - Fr, который вообще является самым сильным восстановителем из всех элементов периодической системы.

Отрицательно заряженные ионы неметаллов. Отрицательно заряженные ионы образуются присоединением к нейтральному атому неметалла одного или несколько электронов:

Так, например, нейтральные атомы серы, йода, имеющие на внешних уровнях 6 и 7 электронов, могут присоединить соответственно 2 и 1 электрон и превратиться в отрицательно заряженные ионы.

Отрицательно заряженные ионы являются сильными восстановителями, так как они могут при соответствующих условиях отдавать не только слабо удерживаемые избыточные электроны, но и электроны со своего внешнего уровня. При этом, чем более активен неметалл как окислитель, тем слабее его восстановительная способность в состоянии отрицательного иона. И наоборот, чем менее активен неметалл как окислитель, тем активнее он в состоянии отрицательного иона как восстановитель.

Восстановительная способность отрицательно заряженных ионов при одинаковой величине заряда растет с увеличением радиуса атома. Поэтому, например, в группе галогенов ион йода обладает большей восстановительной способностью, чем ионы брома и хлора, a фтор - восстановительных свойств совсем не проявляет.

Положительно заряженные ионы металлов в низшей степени окисления. Ионы металлов в низшей степени окисления образуются из нейтральных атомов в результате отдачи только части электронов с внешней оболочки. Так, например, атомы олова, хрома, железа, меди и церия, вступая во взаимодействие с другими веществами, вначале могут отдать минимальное число электронов.

Ионы металлов в низшей степени окисления могут проявлять восстановительные свойства, если у них возможны состояния с более высокой степенью окисления.

В уравнении ОВР расставьте коэффициенты методом электронного баланса. Укажите окислитель и восстановитель.


K2Cr2O7 + 6FeSO4 + 7H2SO4 = K2SO4 + Cr2 (SO4) 3 + 3Fe2 (SO4) 3 + 7H2O

1 Cr2+6 +3е x 2 Cr2+3 окислитель

6 Fe +2 - 1е Fe+3 восстановитель

2KMnO4 + 5H2S + 3H2SO4 = K2SO4 + 2MnSO4 + 5S + 8H2O

2 Mn+7 + 5е Mn+2 окислитель

5 S-2 - 2е S0 восстановитель


5. Меркурометрия. Роданометрия


Для титриметрического определения галогенидов применяют меркурометрию - метод, основанный на образовании малорастворимых солей с ионами Hg (I).

Титрант-водный раствор Hg2 (NO3) 2. Конечную точку титрования устанавливают по исчезновению красной окраски при добавлении Fe (SCN) 3 или по образованию сине-фиолетового осадка с дифенилкарбазоном. Индикаторы рекомендуется вводить как можно ближе к концу титрования. Метод позволяет определять ионы Сl - в присут. восстановителей (S2-, SO2-3) и окислителей (МnО4-, Сr2О7-).

Меркурометрия дает возможность прямого определения анионов в кислой среде (0,2-5 М HNO3), в мутных и окрашенных растворах; однако токсичность солей Hg является серьезным недостатком методов.

Роданометрической титрование основано на осаждении ионов Ag+ тиоцианатами:


Ag+ + SCN - = AgSCN


Для определения необходим раствор NH4SCN (или KSCN). Определяют Ag+ прямым титрованием раствором тиоцианата.

Тиоцианатометрическое определение галогенов выполняют по так называемому методу Фольгарда: к жидкости, содержащей С1-, приливают избыток титрованного раствора нитрата серебра. Затем остаток AgNO3 обратно оттитровывают раствором тиоцианата и вычисляют результат.

Индикатор метода Фольгарда - насыщенный раствор NH4Fe (SO4) 2 - 12H2O. Пока в титруемой жидкости имеются ионы Ag+, прибавляемые анионы SCN - связываются с выделением осадка AgSCN, но не взаимодействуют с ионами Fe3+. Однако после точки эквивалентности малейший избыток NH4SCN (или KSCN) вызывает образование кроваво-красных ионов [Fe (SCN)] 2+ и [Fe (SCN) 2] +. Благодаря этому удается определить эквивалентную точку.

Присутствие кислот не мешает титрованию по методу Фольгарда и даже способствует получению более точных результатов, так как кислая среда подавляет гидролиз соли железа. Метод позволяет определять ион С1 - не только в щелочах, но и в кислотах. Определению не мешает присутствие Ва2+, Рb2+, Bi3+ и некоторых других ионов. Однако если в анализируемом растворе имеются окислители или соли ртути, то применение метода Фольгарда становится невозможным: окислители разрушают ион SCN-, а катион ртути осаждает его.

Щелочной исследуемый раствор нейтрализуют перед титрованием азотной кислотой, иначе ионы Fe3+, входящие в состав индикатора, дадут осадок гидроксида железа (III).

Напишите реакцию, диссоциацию комплекса, выражение к нестойкости.


H2S + 2 [Ag (NH3) 2] Cl = Ag2S + 2NH4Cl + 2NH3

[Ag (NH3) 2] Cl = [Ag (NH3) 2] + + Cl-

[Ag (NH3) 2] + = Ag+ + 2NH3

Kнест. = [Ag+] [NH3] 2/[[Ag (NH3) 2] +]


Какие частицы могут быть лигандами? Приведите примеры.

Лиганды - некоторое число противоположно заряженных атомов или электронейтральных частиц вокруг комплексообразователя.

Лигандами могут быть:

ионы галогенов, CN-, SCN-, NO2-, OH-, SO42-, CO32 - и др.;

нейтральные молекулы: H2O, NH3, N2H4, C2H5N и др.

Ответ на тестовые задания.

1 - В 49 - В

10 - В 57 - А

20 - Б 59 - Б, Г

28 - Б 69 - Б

38 - В 77 - В

Решение задач.

Какие массы сульфата натрия и воды необходимо взять для приготовления 3 кг раствора с массовой долей 20%. Как приготовить данный раствор?


Дано:

Решение:

M раствора = 3000 г

ω = 20%

Найти:

mводы - ?

mNa2SO4 - ?


ω = mвещества /mраствора x 100%

1) Находим массу натрия сульфата:

m = ω x mраствора /100

m = 20 х 3000/100 = 600 г (натрия сульфата)

2) Находим массу растворителя (воды):

m = mраствора - mвещества

m воды = 3000- 600 = 2400г (воды)

3) Переведем массу растворителя в объем:

Так как плотность воды = 1г/мл, значит

ρ = m/V, V = m/ ρ

V = 2400/1 = 2400 мл (воды)

Ответ:

Чтобы приготовить раствор по вышеуказанному условию необходимо:

взвесить на аналитических весах 300 г натрия сульфата;

количественно верно (или без потерь) перенести в колбу нужного объема;

добавить в колбу отмеренный цилиндром 2400 мл воды;

все перемешать.



Как приготовить 50 г 0,5% раствора KMnO4 разбавлением 1,55%, плотностью 1,02 г/мл?


Дано:

Решение:

mраствора = 50 г

ω = 0,5%

ω1 = 1,55%

ρ1 = 1,02г/мл

Найти:

mводы - ?

mMgSO4 - ?


ω = mвещества /mраствора x 100%

1) Находим массу растворенного вещества:

m = ω x mраствора /100

m = 0,5 x 50/100 = 0,25г (калия перманганата)

2) Находим объем 1,55% раствора, необходимого для получения 0,5% раствора:

ω = mвещества x 100/Vраствора x ρ

V = m x 100/ ω x ρ

V = 0,25 х 100/1,55 х 1,02 = 15,8 мл

3) Переводим в граммы:

ρ = m/V, m = V x ρ

m = 15,8 х 1,02 = 16,1 г

4) Находим массу воды:

m = mраствора - mвещества

m = 50 - 16,1 = 33,9 г (воды)

5) Переведем массу растворителя в объем:

Так как плотность воды = 1г/мл, значит

ρ = m/V, V = m/ ρ

V = 33,9/1 = 33,9 мл (воды)

Ответ:

Чтобы приготовить раствор по вышеуказанному условию необходимо:

отмерить 15,8 мл 1,55% раствора калия перманганата;

количественно верно (или без потерь) перенести в колбу нужного объема;

добавить в колбу отмеренный цилиндром 33,9 мл воды;

все перемешать.


Как приготовить 250 мл 0,03 N раствора NaNO2 разбавлением 2 N раствора.


Дано:

Решение:

V = 250 мл

Сm = 0,03N

Cn = 2N

Найти:

mводы - ?

m NaNO2 - ?


1) Находим объем 2 N раствора для приготовления 0,03N раствора:

V1/V2 = N2/N1

250/x = 2/0,03

X = 250 x 0,03/2 = 3,75 мл

2) Находим объем воды для разбавления:

250 мл - 3,75 мл = 246,25 мл

Ответ: Чтобы приготовить раствор по вышеуказанному условию необходимо:

отмерить 3,75 мл 2 N раствора натрия нитрита;

количественно верно (или без потерь) перенести в колбу нужного объема;

добавить в колбу отмеренный цилиндром 246,25 мл воды;

все перемешать.


Рассчитайте pOH раствора, если -lg [H] = 8 x 10-4.


Дано:

Решение:

-lg [H] = 8 x 10-4

Найти:

pOH - ?


pOH = 14 - pH

pH = - lg [H+]

pH = - lg 8 x 10-4 = 2,09

pOH = 14 - 2,09 = 11,91

Ответ: pOH раствора 11,91.


Как изменится pH ацетатного буфера, состоящего из 100 мл 0,01N раствора CH3COOH и 50 мл 0,01 N раствора CH3COONa, если:

1) к нему прилили 25 мл 0,01 N NaOH;

2) разбавить буфер в 2 раза;


рК (CH3COOH) = 4,7


Дано:

Решение:

C (CH3COOH) = 0,01 N

C (CH3COONa) = 0,01N

pK (CH3COOH) = 4,7

V (CH3COOH) = 100 мл

V (CH3COONa) = 50 мл

Найти:

pH - ?


1) Находим pH:

К = [NH4+] [OH-] / [NH4OH]

C (CH3COOH) = Cкислоты

C (CH3COONa) = С соли

[H-] = K + [кислоты] / [соли]

pH = 4,7 + lg 0,01/0,005 = 4,7 + lg 2 = 4,7 + 0,3 = 5

если к данному раствору прилить 25 мл 0,01N NaOH:

pH = 4,7 + lg 0,01/0,01 = 4,7

если разбавить буфер в 2 раза, то:

pH = 4,7 + lg 0,02/0,005 = 4,7 + lg 0,005 = 4,7 - 0,6 = 4,1

Ответ: при прибавлении 25 мл,0, 01N раствора NaOH и разбавлении в 2 раза рН данного буфера уменьшиться.



Список литературы


1.                В.Д. Пономарев "Аналитическая химия" - М.: Медицина, 1982.

2.                К.А. Селезнев "Аналитическая химия" - М. Высшая школа. 1966.

3.                А.П. Крешков, А.А. Ярославцев "Курс аналитической химии" - М. Химия. 1982.

4.                Зубович И.А. Неорганическая химия: Учебник для технол. спец. вузов. - М.: Высшая школа, 1989.

5.                Ахметов Н.С. Общая и неорганическая химия: Учебник для вузов. - М.: Высшая школа, 1981.

6.                Зайцев О.С. Задачи, упражнения и вопросы по химии - М.: Химия, 1996



Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.