основные тригонометрические тождества;
доказательство формул;
мнемоническое правило.
Свойства тригонометрических функций:
sin x, y= cos x, y= tg x, y= ctg x.
Их графики.
Определения синуса, косинуса, тангенса и котангенса через тригонометрический круг.
Простейшие тригонометрические уравнения.
Определения и свойства обратных тригонометрических функций: y= arcsin x, y= arccos x, y= arctg x, y= arcctg x.
Простейшие тригонометрические неравенства (sin x < a).
Любая производная из листа, таблицы.
Правила вычисления производной (Лагранж).
Геометрический смысл производной:
производная в данной точке;
уравнение касательной;
угол между прямыми.
Физический смысл производной.
Экстремумы функций. Правила нахождения их с помощью производной.
Возрастание и убывание функции. Правило Лагранжа.
Наибольшее и наименьшее значение функции. Правила. На эту тему.
Многочлены. Теорема Безу, ее доказательство.
Правила нахождения рациональных корней, доказательство.
Четность, периодичность.
tg208° <sin492°
sin1 или cos1
tg1 или tg2