Рефераты. Реферат: Интеграл по комплексной переменной

Реферат: Интеграл по комплексной переменной

Интеграл по комплексной переменной.

Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную.

Определение 2: Кривая называется кусочно-гладкой ,если она состоит из конечного числа гладких дуг.

Основные свойства : Пусть на комплексной плоскости  Z задана кусочно-гладкая кривая С длиной  l, используя  параметрическое задание кривой С зададим h(t) и x (t), где h и x являются кусочно-гладкими кривыми от действительной  переменной t. Пусть a<= t<=b, причем a и b могут быть бесконечными числами .

  Пусть x и h удовлетворяют условию : [x‘(t)]2 + [h‘(t)]2 ¹ 0.  Очевидно, что задание координат h =h(t) и x=x (t), равносильно заданию комплексной функции z (t)= x (t) + ih(t).

Пусть в каждой точке z (t)  кривой С определена некоторая функция f (z ). Разобьем кривую С на n – частичных дуг точками деления z0 , z1 , z2 , …,  z n-1 соответствующие возрастающим значениям параметра t, т.е. t0, t1, …, t i+1 > t i.

Dz i =z i – z i-1. Составим интегрируемую функцию S = åf (z*)Dz i .  (1)
где z*– производная точки этой дуги.

Если при стремлении max |Dz i |® 0 существует предел частных сумм не зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек z i , то этот  предел называется интегралом от функции f (z ) по кривой С.


                            (2) 

f (zi* ) = u (Pi*) + iv (Pi*)      (3)

где Dz i = Dx (t) + iDh(t)     (x (t) и h(t) - действительные числа)

Подставив (3) в (1) получим :


           (4)

Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной переменной. Переходя в (4) к пределу при Dx и Dh ® 0 и предполагая, что данные пределы существуют, получаем :


                                                            (5)

Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это означает, что (2) существует и в случае неаналитичности функции f (x ).

Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства (5) следуют свойства :











О ограниченности интеграла.



При этом z = j (z ).

   7.) Пусть Cp – окружность радиуса r, с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp : z = Z0 + r×eij,    0 £ j £ 2p,      dz = ir×eij dj .



Кусочно-гладкую замкнутую кривую будем называть замкнутым контуром, а интеграл по замкнутому контуру – контурным интегралом.

ТЕОРЕМА КОШИ.

В качестве положительного обхода контура выберем направление при котором внутренняя область, ограниченная данным замкнутым контуром остается слева от направления движения :



Для действительной переменной имеют место формулы Грина. Известно, что если функции P(x, y) и Q(x, y) являются непрерывными в некоторой заданной области G, ограниченны кусочно-гладкой кривой С, а их частные производные 1-го порядка непрерывны в G, то имеет место формула Грина:


        ( 8 )

ТЕОРЕМА : Пусть в односвязной области G задана аналитическая функция f(Z), тогда интеграл от этой функции по замкнутому контуру Г целиком лежащему в G , равен нулю.

Доказательство : из формулы (5) следует:



Т.к. f(z ) аналитическая всюду, то  U(x, y), V(x, y) - непрерывны в области, ограниченной этим контуром и при этом выполняются условия Коши-Римана. Используя свойство криволинейных интегралов:



Аналогично :

По условию Коши-Римана в последних равенствах скобки равны нулю, а значит и оба криволинейных интеграла равны нулю. Отсюда :



ТЕОРЕМА 2 (Вторая формулировка теоремы Коши) : Если функция f(z) является аналитической в односвязной области G, ограниченной кусочно-гладким контуром C, и непрерывна в замкнутой области G, то интеграл от такой функции по границе С области G равен нулю.

TEOPEMA 3 (Расширение теоремы Коши на многосвязную область) :


Пусть f (z) является аналитической функцией в многосвязной области G, ограниченной извне контуром С0, а изнутри контурами С1, С2, .. ,Сn (см. рис.). Пусть f (z) непрерывна в замкнутой области G, тогда :


, где С – полная граница области G, состоящая из контуров С1, С2, .. , Сn. Причем обход кривой С осуществляется в положительном направлении.

Неопределенный интеграл.



Следствием формулы Коши является следующее положение : пусть f(Z) аналитична в односвязной области G, зафиксируем в этой области точку Z0 и обозначим:

 интеграл по какой-либо кривой, целиком лежащей в области G, содержащей Z0 и Z, в силу теории Коши этот интеграл не зависит от выбора кривой интегрирования и является однозначной функцией  Ф(Z). Аналитическая функция Ф(Z) называется первообразной от функции f(Z) в области G, если в этой области имеет место равенство : Ф (Z) = f( Z).

Определение: Совокупность всех первообразных называется неопределенным интегралом от комплексной функции f(Z). Так же как и в случае с функцией действительного переменного имеет место равенство :

         

                  ( 9)

Это аналог формулы Ньютона-Лейбница.

Интеграл Коши. Вывод формулы Коши.


Ранее была сформулирована теорема Коши, которая позволяет установить связь между значениями аналитической функции во внутренних точках области ее аналитичности и граничными значениями этой функции.




Пусть функция f(Z) – аналитическая функция в односвязной области G, ограниченной контуром С. Возьмем внутри этой области произвольную точку Z0 и в области G вокруг этой точки построим замкнутый контур Г. Рассмотрим вспомогательную функцию j (Z). Эта функция аналитична в области G всюду, кроме точки Z=Z0. Проведем контур g с достаточным радиусом, ограничивающий точку Z0, тогда функция будет аналитична в некоторой двусвязной области, заключенной между контурами Г и g. Согласно теореме Коши имеем :

По свойствам интегралов :

          (2 )


 Так как левый интеграл в (2) не зависит от выбора контура интегрирования, то и правый интеграл также не будет зависеть от выбора контура. Выберем в качестве g окружность gr с радиусом r . Тогда:

           (3)

Уравнение окружности gr : z = Z0 + reij         (4)

Подставив (4) в (3) получим :


       ( 5 )

                                                                        


            ( 6 )

       


       (7)


Устремим  gr® 0, т.е. r® 0.

Тогда т.к. функция  f(z) аналитична в точке Z=Z0 и всюду в области G, а следовательно и непрерывна в G, то для всех e>0 существует r>0, что для всех z из r–окрестности точки Z0 выполняется | f(z) – f(Z0) | < e.




               (8)

Подставив ( 7) в ( 6) с учетом ( 8) получаем :



Подставляя в ( 5)  и выражая f(Z0) имеем :

            (9)


Это интеграл Коши.

Интеграл, стоящий в (9) в правой части выражает значение аналитической функции f(z) в некоторой точке Z0 через ее значение на произвольном контуре g , лежащем в области аналитичности функции f(z) и содержащем точку Z0 внутри.

Очевидно, что если бы функция f(z) была аналитична и в точках контура С, то в качестве границы g в формуле (9) можно было использовать контур С.

Приведенные рассуждения остаются справедливыми и в случае многосвязной области G.

Следствие : Интеграл Коши, целиком принадлежащий аналитической области G имеет смысл для любого положения Z0 на комплексной плоскости при условии, что эта точка есть внутренней точкой области Г. При этом если Z0 принадлежит области с границей Г, то значение интеграла равно (9), а если т. Z0 принадлежит внешней области, то интеграл равен нулю :



При Z0 Î Г указанный интеграл не существует.

Интегралы, зависящие от параметра.

Рассматривая интеграл Коши, видим, что подинтегральная функция зависит от 2-х комплексных переменных : переменной интегрирования z и Z0. Таким образом интеграл Коши может быть рассмотрен как интеграл, зависящий от параметра, в качестве которого выбираем точку Z0.

Пусть задана функция двух комплексных переменных j (Z, z ), причем   Z= x + iy  в точке, принадлежащей некоторой комплексной плоскости G. z= x+ ih  Î  С.  (С - граница G).

Взаимное расположение области и кривой произвольно. Пусть функция j (Z, z )  удовлетворяет условиям : 1) Функция для всех значений z Î  С является аналитической в области G. 2) Функция j (Z, z )  и ее производная ¶j/¶Z являются непрерывными функциями по совокупности переменных Z и z при произвольном изменении области G и переменных на кривой С. Очевидно, что при сделанных предположениях :



Интеграл существует и является функцией комплексной переменной. Справедлива формула :


                              (2)

Эта формула устанавливает возможность вычисления производной от исходного интеграла путем дифференцирования подинтегральной функции по параметру.

ТЕОРЕМА.  Пусть f(Z) является аналитической функцией в области G и непрерывной в области G (G включая граничные точки ), тогда во внутренних точках области G существует производная любого порядка от функции f(Z) причем для ее вычисления имеет место формула :


 (3)

С помощью формулы (3) можно получить производную любого порядка от аналитической функции  f (Z) в любой точке Z области ее аналитичности. Для доказательства этой теоремы используется формула (2) и соответственные рассуждения, которые привели к ее выводу.

ТЕОРЕМА МОРЕРА. Пусть f(Z) непрерывна в односвязной области G и интеграл от этой функции по любому замкнутому контуру, целиком принадлежащему  G равен 0. Тогда функция f (Z) является аналитической функцией в области G. Эта теорема обобщается и на случай многосвязной области G.

Разложение функции комплексного переменного в ряды.

Если функция f(x, y) определена и непрерывна вместе с частными производными (до n-го порядка ), то существует разложение этой функции в ряд Тейлора :


Итак, если задана функция f (z) комплексного переменного, причем f (z) непрерывная вместе с производными до n-го порядка, то:


               (2) – разложение в ряд Тейлора.

Формула (2) записана для всех Z принадлежащих некоторому кругу | Z-Z0 |<R, где R – радиус сходимости ряда (2).

Функция f (z), которая может быть представлена в виде ряда (2) является аналитической функцией. Неаналитическая функция в ряд Тейлора не раскладывается.


                      (3)


        (4)


           (5)

Причем | Z | < R,  R ®  ¥ .

Формулы ЭЙЛЕРА.

Применим разложение (3) положив, что Z = ix  и   Z= - ix;




                                                        (6)

Аналогично взяв Z = - ix  получим :


                                                      (7)

Из (6) и (7) можно выразить т.н. формулы Эйлера :


                 (8)

В общем случае :


    (9)

Известно, что :


      (10)

Тогда из (9) и (10) вытекает связь между тригонометрическими и гиперболическими косинусами и синусами:


Ряд ЛОРАНА.

Пусть функция f(z) является аналитической функцией в некотором круге радиусом R, тогда ее можно разложить в ряд Тейлора (2). Получим тот же ряд другим путем.

ТЕОРЕМА 1.


Однозначная функция  f(Z) аналитическая в круге радиусом  |Z-Z0| < R раскладывается в сходящийся к ней степенной ряд по степеням Z-Z0.

Опишем в круге радиусом R окружность r, принадлежащую кругу с радиусом R.

Возьмем в круге радиуса r точку Z, а на границе области точку z , тогда  f(z) будет аналитична внутри круга с радиусом r и на его границе. Выполняется условие для существования интеграла Коши :


                                                                                        (13)


                (11)

Поскольку


, то выражение
 можно представить как сумму бесконечно убывающей геометрической прогрессии со знаменателем
, т.е. :




                     (12)

Представим равномерно сходящимся рядом в круге радиуса r, умножая (12) на 1/(2pi) и интегрируя по L при фиксированном  Z, получим : слева интеграл (13) который равен f (Z), а справа будет сумма интегралов :


Обозначая
, получим :
            (14)

Это разложение функции f (Z) в круге R в ряд Тейлора. Сравнивая (14) с рядом (2) находим, что
                                                                                 (15)

ТЕОРЕМА 2.

Если однозначная функция f(Z) аналитична вне круга с радиусом r с центром в точке Z0 для всех Z выполняется неравенство r < |Z-Z0 |, то она представляется рядом :


                                                                        (16)

где  h - ориентированная против часовой стрелки окружность радиуса r (сколь угодно большое число). Если обозначить
  (17) , получим :


                                                (18)

ТЕОРЕМА 3.

Если однозначная функция f(Z) аналитическая в кольце Z< |Z-Z0 |<R, где  0£ Z<R<¥ , то она раскладывается в сходящийся степенной ряд :


                                  (19)

f1 и  f2 можно представить в виде двух рядов :


                              (20)


                           (21)

Ряд (19) – ряд Лорана, при этом ряд (20) сходится в круге радиуса R, ряд (21) сходится вне круга радиуса R функции f2(Z). Общая область сходимости ряда – кольцо между   r и R.

f1(Z) – правильная часть.

f2(Z) – главная часть ряда Лорана.

Ряд Тейлора – частный случай ряда Лорана при отсутствии главной его части.

Классификация изолированных особых точек. Вычеты.

Определение 1. Особой точкой функции f(Z) определенной в области (замкнутой) G, ограниченной Жордановой кривой, называется точка   Z=Z0 Î G в которой аналитичность функции  f1(Z) нарушается. Рабочая точка Z=Z0 функции f(Z), ограниченной в круге |Z-Z0|<R называется изолированной, если функция  f(Z) в каждой точке этого круга аналитична, кроме самой точки Z=Z0. В зависимости от поведения функции f(Z) в окрестности изолированных особых точек последние классифицируются на :

Устранимые особые точки. Ими называются особые точки, для которых существует
, где А – конечное число.

Если для особой точки существует предел
, то такая особая точка называется полюсом.

Если
 не существует, то точка Z=Z0 называется существенной особой точкой.

Если С-n=0, то особая точка есть устранимая особая точка.


Пусть f(Z0)=C0 и C-n  для всех  n=1,2,3,..,m отличного от 0, а для всех  n ® m+1   C-n=0, тогда Z=Z0 будет являться полюсом порядка  m.

При m>1 такой полюс будет называться простым.


, если m ® ¥ , то в этом случае в точке Z=Z0 имеем существенную особенность.

Определение 2. Вычетом функции f(Z) в круге  |Z-Z0|<R, ограничивающем изолированную особую точку Z=Z0 называется интеграл :
 , где L – ориентированный против часовой стрелки контур целиком расположенный в круге радиуса R, содержащем Z0. Вычет существует только для изолированных особых точек. Очевидно, что вычет функции f(z) при Z=Z0 равен первому коэффициенту ряда главной части Лорана :

Если полюс имеет кратность m ³ 1, то для определения вычетов используется формула :


                             (3)

при m=1 :


Основная теорема о вычетах.

Пусть f(z) аналитическая в области G кроме конечного числа полюсов Z = a1, a2, …, ak. g –произвольный, кусочно-гладкий замкнутый контур содержащий внутри себя эти точки и целиком лежащий внутри области G. В этом случае интеграл
 равен сумме вычетов относительно a1, a2, …, ak и т.д. умноженный на 2pi :


                                         (5)

Пример :

Найти вычет

Особые точки : Z1=1, Z2= - 3.

Определим порядок полюсов – все полюсы первого порядка.

Используем формулу (3) :



Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.ed.vseved.ru/



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.