Statistics - Correlate - Bivariate - выбор переменных --
-- Correlation Coefficients - Spearman
Коэффициент Спирмена менее мощный, чем коэффициент Пирсона, поскольку в нем используется меньше информации о данных; тем не менее он является весьма полезным и часто используется в случае невозможности использования критерия Пирсона.
При интерпретации результатов исследования комбинации переменных с помощью корреляции, необходимо помнить, что сильная корреляционная зависимость между переменными совсем не означает, что одна является причиной другой!
2.5. Расчет t-критерия.
t-критерий применяется для сравнения двух групп, образованных категориями независимой переменной по характеристикам распределения зависимой непрерывной переменной.
В основе t-критерия лежат следующие предположения.
Две группы являются взаимоисключающими, т.е. каждое наблюдение может попасть только в одну из этих групп.
Данные получены в результате случайной выборки из генеральной совокупности с нормальным распределением непрерывной переменной.
В генеральной совокупности в обеих группах одинаковая дисперсия непрерывной переменной
Как правило, перед расчетом t-критерия осуществляется проверка двух последних предположений. Для проверки равенства дисперсий используется критерий Ливиня (Levene test), который более устойчив к нарушению нормальности распределения, чем другие критерии; в программе SPSS он автоматически рассчитывается при расчете t-критерия. Нулевая гипотеза, которую проверяет критерий Ливиня - равенство внутригрупповых дисперсий.
Как и все виды генерализующей статистики, t-критерий используется для того, чтобы на основе данных нашей выборки оценить вероятность того, что обнаруженные различия являются подлинными (существующими в генеральной совокупности), а не вызваны исключительно случайной ошибкой выборки.
Нулевая гипотеза состоит в том, что средние значения исследуемой переменной в группах равны (применительно к обработке опросного листа - например, в группе мужчин и группе женщин).
Для расчета t-критерия используются пункты меню:
Statistics - Compare Means - Independent Samples T Test - -- выбор переменных - для переменной Grouping Variable определить группы - Define Groups
Рис. 2.17. Формирование задания для вычисление t- критерия
Levene's Test for Equality of Variances - критерий равенства дисперсий Ливиня. Приводится значение критерия F и уровень его значимости Sig. Если уровень значимости критерия ниже 0.05, то нулевая гипотеза о равенстве дисперсий отвергается, и можно использовать только вторую строку таблицы - Equal variances not assumed (равенство дисперсий не предполагается). В противном случае используется первая строка.
t - значение t-критерия. Показывает направление и степень межгруппового различия средних.
Sig (2-tailed) - уровень значимости t-критерия. Если уровень значимости больше 0.05, принимается нулевая гипотеза о равенстве средних в подгруппах; в противном случае - отвергается.
В том случае, если данные не удовлетворяют требованиям t-критерия (например, невозможно установить, что групповые дисперсии равны), можно использовать непараметрические критерии. Наиболее подходящим непараметрическим критерием, заменяющим t-критерий, является критерий Манна-Уитни (обозначается буквой U). Для расчета значения критерия подгруппы ранжируются; нулевая гипотеза состоит в том, что суммы рангов в обеих группах должны быть равными, и рассчитываемый уровень вероятности показывает вероятность этой гипотезы.
Для расчета значения критерия применяются пункты меню (рис. 2.18): Statistics - Nonparametric Tests - 2 Independent Sample -
выбор переменных -- Test Variable List, Grouping Variable Define Variable -- Mann-Whitney U
Рис. 2.18. Вычисление критерия Манна-Уитни
Интерпретация результатов совершенно аналогична интерпретации результатов вычисления t-критерия. Если symp. Sig. (2-tailed) - рассчитанный уровень вероятности, - 0.05, то нет оснований отвергнуть нулевую гипотезу.
Хотя непараметрический критерий Манна-Уитни менее мощный, чем t-критерий, поскольку он использует меньше информации о данных, этот критерий часто используется в тех случаях, когда нет уверенности в том, что данные соответствуют условиям применимости t-критерия.
2.6. Регрессионный анализ.
Линейный регрессионный анализ позволяет получить предсказание значений зависимой переменной на основе значений независимых переменных.
Линейный регрессионный анализ является достаточно сложной статистической процедурой. Поэтому здесь ограничимся рассмотрением случая одной зависимой и одной независимой переменной и будем использовать процедуру простой линейной регрессии.
Для расчета линейной модели регрессии необходимо использовать пункты меню (см. рис. 2.19):
Statistics - Regression - Linear -
выбрать переменную и поместить ее в окно Dependent (зависимая переменная) - выбрать переменную и поместить ее в окно Independet(s) (независимые переменные).
Нажав кнопку Statistics… можно задать расчет ряда коэффициентов регрессии, нажав кнопку Plots… - вид выводимых графиков в процедуре линейной регрессии (см. рис. 2.20), можно задать сохранение результатов процедуры "Линейная регрессия" (кнопка Save…) и параметры процедуры регрессии (кнопка Options…)
Рис. 2.19. Вычисление регрессионной модели
Рис. 2.20. Задание на расчет коэффициентов регрессии и вида графиков
При интерпретации результатов, полученных в окне вывода программы SPSS, необходимо учитывать, что некоторые выходные данные требуются только при построении сложных регрессионных моделей. Поэтому рассмотрим только основные элементы выходных данных. В сноске к таблице Model Summary дается информация, которая показывает, насколько хорошо можно представить значение зависимой переменной на основе независимой:
R - коэффициент корреляции между переменными;
R-square - квадрат коэффициента корреляции (показывает, какая часть изменчивости зависимой переменной может быть объяснена независимой переменной).
При интерпретации выходных данных необходимо учитывать значимость коэффициентов (столбец Sig. таблицы ANOVA): линейная регрессионная модель зависимости является надежной, если уровень значимости не превышает 0.05 (5%).
В таблице Coefficients (коэффициенты) приводятся рассчитанные коэффициенты регрессионной модели: регрессионный коэффициент (тангенс угла наклона прямой), а также постоянная прямой. Значение в первой строке столбца В таблицы (Constant) - постоянная, во второй (где приведено имя переменной) - коэффициент (тангенс угла наклона прямой). С помощью этих чисел можно записать уравнение прямой:
Зависимая переменная = Коэффициент * Независимая
переменная + Постоянная
Теперь, используя это уравнение, можно по заданному значению независимой переменной вычислять значения (предсказанные) зависимой переменной.
В столбце Sig. таблицы Coefficients представлен уровень значимости для каждого регрессионного коэффициента. При 5%-ном уровне значимости можно считать неравными нулю только те коэффициенты, для которых значение Sig. не превышает 0.05.
2.7. Редактирование таблиц и графиков в окне Навигатора Вывода.
Результаты выполнения процедур SPSS выводятся в окно, называемое Output Navigator (Навигатор Вывода). Непосредственно в окне Навигатора можно отредактировать выводимые результаты и создать документ, содержащий именно то, что необходимо исследователю для создания полноценного отчета о результатах анализа опросных листов.
Навигатор вывода можно использовать для того, чтобы:
просматривать выводимые данные;
показывать или скрывать выбранные таблицы и диаграммы;
изменять порядок следования элементов вывода;
переходить к Редактору Таблиц, Редактору Текста или Редактору Диаграмм;
перемещать объекты SPSS в другие приложения (например, документ текстового редактора Word).
Окно навигатора (см. рис. 2.21) разделено на две части - в левой находится схема вывода, в правой - сами результаты (статистические таблицы, диаграммы, текст). Пользователь может передвигать границу между этими частями, если он захочет изменить ширину левой или правой части.
Содержимое окна Навигатора может быть сохранено в документе во внутреннем формате SPSS - *.spo, для чего необходимо использовать:
File - Save (Save As …),
а для сохранения вывода во внешних форматах (текстовом, HTML), использовать:
File - Export - Тип файла
Рис. 2.21. Окно навигатора вывода
Для того, чтобы скрыть таблицу или диаграмму, не удаляя их, необходимо щелкнуть дважды на пиктограмме, изображающей открытую книгу, в левой части Навигатора Вывода, либо выбрать в меню: View - Hide.
Перемещение, копирование и удаление результатов можно производить либо с помощью мыши, перетаскивая при нажатой левой клавише нужные элементы в левой часто окна навигатора, либо используя элементы меню:
Edit - Cut, Copy, Copy Objects, Delete
Для изменения размеров элементов в схеме нужно выбрать View -, Outline Size, а для изменения шрифта View - Outline Font.
Большинство результатов в SPSS выводится в форме таблиц. Их вид может быть изменен пользователем, который может управлять представлением строк, столбцов и слоев таблицы. Таблицы такого типа называются в SPSS "pivot table" (мобильная таблица). Для редактирования таблицы необходимо два раза щелкнуть на ней в правой части окна Навигатора Вывода. Это действие запускает Редактор Мобильной Таблицы. Используя пункт меню Pivot - Pivoting Trays (cм. рис. 2.22)
Рис. 2.22. Окно Pivoting Trays группировки данных в таблице(изменения меток строк и столбцов, порядок отображения категорий и т.п.).
Используя Редактор Мобильной Таблицы можно перемещать и менять местами строки (столбцы), поворачивать метки строк и столбцов: Format - Rotate Inner Column Labels или Rotate Outer Row Labels.
Можно изменять общий вид таблицы, применив к ней один из элементов Table Looks (Стиль таблицы). Диалоговое окно Table Properties (Свойства таблицы) дает возможность устанавливать и менять общие свойства таблицы, такие как сокрытие пустых строк или столбцов и разбивка таблицы на страницы при печати, определение формата отдельных ячеек, изменение рамок и т.п.
В Редакторе Таблицы можно задать характеристики шрифта для разных областей таблицы вплоть до любой отдельной ячейки: Format - Font.
Страницы: 1, 2, 3, 4, 5, 6, 7