Рефераты. Агроэкологическая оценка загрязнения почвы кобальтом и разработка системы земледелия в СХП "Колос"

Агроэкологическая оценка загрязнения почвы кобальтом и разработка системы земледелия в СХП "Колос"

27

Содержание

  • Введение
  • 1. Основная часть
    • 1.1 Агроклиматические и почвенные ресурсы хозяйства СХП "Колос"
    • 1.2 Пути загрязнения почвы кобальтом
    • 1.3 Поступление кобальта в пищевые цепи, биотрансформация, микробный распад, химическая трансформация
    • 1.4 Гигиеническое нормирование кобальта в сельскохозяйственной продукции
    • 1.5 Расчет внесения кобальта с органическими и минеральными удобрениями
    • 1.6 Баланс кобальта в агросистеме
  • Заключение
  • Список литературы
  • Исходные данные
  • 1. Почвенно-климатическая зона.
  • 1.1. Степная.
  • 1.2. Почвы - Чернозем обыкновенный среднесуглинистый солонцеватый.
  • 2. Равнина.
  • 3. Содержание гумуса 5,7 %.
  • 4. рН 7
  • 5. Содержание кобальта:
  • На глубине 0-20 см 100-200 мг/кг;
  • 20-40см 200-300 мг/кг.
  • Информация:
  • Расстояние до объекта 6 км.
  • Площадь поля 100 га.
  • Урожайность пшеницы до проведения мелиоративных работ 9 ц/га.
  • Урожайность пшеницы после мелиоративных работ 14 ц/га.
  • Закупочная цена до проведения мелиоративных работ 610 руб./кг.
  • Закупочная цена после мелиоративных работ 1400 руб./кг.

Введение

Быстрое развитие промышленности без проведения необходимых мероприятий по охране окружающей среды привело к тотальному загрязнению почвы, мирового океана, растительного и животного мира, а нередко и гибели некоторых видов флоры и фауны. В настоящее время в окружающую среду выбрасываются сотни миллионов тонн в год различных продуктов антропогенной деятельности человека. При сжигании каменного угля ежегодно в окружающую среду поступает около трех тысяч тонн ртути и огромное количество продуктов неполного сгорания угля. С выхлопными газами автомобильного и авиационного транспорта в атмосферу попадают миллионы тонн газообразных, жидких и твердых продуктов, причем некоторые из них обладают высокой токсичностью для человека, животных и растений. Немалый вклад в загрязнение окружающей среды вносят металлургическая, химическая и другие отрасли промышленности, а также сельскохозяйственное производство и коммунальное хозяйство. В связи с этим перед человечеством стоит серьезная задача изучения этих выбросов в окружающую среду и уменьшения опасности отравления живых организмов и человека.

Курсовая работа представляет собой анализ поведения кобальта в системе биотрансформации в почве и растениях и разработку на основе этого рационального ведения сельскохозяйственного производства, а также проведения специальных мероприятий реабилитации почвы путем проведения специальных мероприятий (переведение в необменные формы токсикантов и т.д.).

Кобальт - элемент 2-й группы периодической системы Менделеева. Металл обладает высокой теплопроводностью и электропроводимостью.

Кобальт относится к металлам с переменной валентностью, что определяет высокое значение окислительно-восстановительного потенциала для системы Со34 -- в кислой среде и позволяет иону кобальта принимать активное участие в реакциях окисления-восстановления.

Кобальт применяется в различных отраслях электротехнической, в тяжелой индустрии, также применяется с\х промышленности в виде кобальтсодержащих удобрений. Значительная часть производимого кобальта применяется в разнообразных сплавах, которые используются как материалы в машиностроении, авиационной промышленности, автомобилестроении, приборостроении и т.д.

1. Основная часть

1.1 Агроклиматические и почвенные ресурсы хозяйства СХП "Колос"

Степная зона - это Бреденский, Октябрьский, Варненский, Кизильский и Карталинский районы Челябинской области. Расположена она также в пределах зауральского пенеплена Западно-Сибирской низменности и имеет типичный равнинный характер. Степь характеризуется большим количеством тепла. Сумма активных температур, превышающих 10°С, составляет 2400-2500°С. Этот температурный уровень наступает 5-8 мая и заканчивается 19 -20 сентября, то есть продолжается 130 -135 дней. Но заморозки весной прекращаются после 20 мая, а осенью наблюдается уже в третьей декаде августа, поэтому безморозный период составляет 100-110 дней. Несмотря на это, температурный режим позволяет выращивать не только традиционные зерновые, но и некоторые теплолюбивые культуры.

По количеству атмосферных осадков степь характеризуется значительной засушливостью. Здесь за год выпадает 350 -400 мм, в том числе за вегетационный период 177-200 мм. Гидротермический коэффициент колеблется в пределах 0,8 - 1,2. Запасы влаги в предпосевной период бывают недостаточные - 115 -135 мм в метровом слое, или 45 -60 % от потребности сельскохозяйственных культур. Засуха и суховеи в районах степи бывают практически ежегодно. Наиболее засушливый месяц - июнь. В этих условиях эффективно ведение агротехнических приемов по накоплению, сохранению и экономичному использования влаги.

Снежный покров степи формируется в середине ноября, сохраняется до 140 -150 дней и достигает высоты 20 -30 см. Однако нарастает он медленно. В начале декабря имеет мощность 10 см, в январе - 15 -20 см и только к концу февраля - 30 см. при сильных морозах (в январе до -44…-48°С) почва промерзает до 200 см и более, а весной оттаивает только в третьей декаде мая.

Природные условия степи менее благоприятны для земледелия. Четко проявляется дефицит влаги. Ветровая эрозия в самой южной части подзоны достигает 17 -22 дней, поэтому 56,75 пахотных земель здесь подвержены эрозии.

Таким образом, ведение земледелии в степи имеют мероприятия по накопления и сохранения влаги, а также мероприятия направленные ветровую и водную эрозию.

Таблица 1 Оценка агроклиматических условий хозяйства

Показатели

Средне многолет. По агрозоне

По хозяйству за последние три года

Оценка обеспеченности

2003г

2004 г

2005г

Сумма осадков за вегет период

220

216

230

175

100

Сумма активных t за вегетационный период

2200

2300

2100

2400

103

ГТК

1

0,95

1

0,91

95

Оценка влагообеспеченности территории по гидротермическому коэффициенту Г.Т.Селянинову по формуле:

К = 10 Р/t, где

Р - сумма осадков за период с температурами более 10? С,мм;

t - сумма температур за тоже время, С?

К =10*220/2200 = 1

К =10*220/2300 = 0,95

К = 10*220/2100 = 1

К = 10*220/2400 =0,91

Из таблицы видно, что обеспеченность теплом 103% а это в свою очередь говорит о высокой обеспеченности теплом в данной зоне. Обеспеченность влагой 100%,следовательно, что сорта все возделываемые в нашем хозяйстве, а именно зерновые будут обеспечены теплом и влагой. Коэффициент по влагообеспеченности по южной лесостепной зоне 0,6 -1,2 , а у нас он получился 1 поэтому эта зона одна из благоприятных для развития низкое.

Чернозем обыкновенный. Характерной особенностью является отсутствие иллювиального горизонта и залегание карбонатов на нижней границе гумусового горизонта. Мощность гумусового горизонта 28 -43 см.

Важными оценочными показателями черноземов обыкновенных являются физико-механические свойства - кислотность. Для рода обыкновенных характерно рыхлое сложение пахотных и подпахотных горизонтов.

Агрохимические свойства черноземов обыкновенных характеризуется комплексом показателей, среди которых важное место принадлежит содержанию гумуса, валовых и подвижных форм азота, фосфора и калия. Содержания гумуса в пахотном горизонте в пределах 4 -7 % и поэтому черноземы обыкновенные имеют средний и повышенный уровень обеспеченности этим фактором.

Азот в почве находится преимущественно в форме органических соединениях основная часть его 70 -90 %. Валовые запасы азота в черноземах обыкновенных колеблются от 12,4 до 26,23 т/га. Максимальная его концентрация находится в гумусовых горизонтах в Ап и АВ1 -0,192 -0,368 и0,173 0,294 % соответственно. С глубиной содержание азота снижается более плавно чем у гумуса.

Фосфатный фонд черноземов обыкновенных весьма бедный. В пашне преобладают почвы с низким и пониженным содержанием фосфора 25- 28 мг/кг (по Чирикову).

Черноземы обыкновенные имеют достаточно высокую обеспеченность гумусом, так как его содержание вписывается преимущественно в пределах 4 -6 и 6 -10 %, высокие статистические показатели содержания валового и легкогидролизуемого азота - 0,167 -259 % и 91 - 101 мг/кг почвы и очень высокое содержание обменного калия 130 -349 мг кг почвы. Однако обеспеченность черноземов обыкновенных фосфором крайне низка. Улучшение фосфорного режима питания растений при возделывании на черноземах обыкновенных всех разновидностей - важная задача агронома.

Важный показатель для определения плодородия расчет запасов гумуса. Запас органического вещества рассчитывается по формуле:

Г = М 1000*В*Р/100

где Г- запасы гумуса, т/га; М - мощность горизонта, м; В - объемная масса г/см; Р - содержание гумуса, %.

Г1 =0,35*10000*1,3*5,7/100 = 259 т/га

По расчетам можно сделать вывод, что черноземы обыкновенные почвы имеют средние запасы гумуса (в метровом слое 259 т/га). По табличным данным черноземы выщелоченные имеют высокую обеспеченность гумусом 400,4 т/га. Поэтому на почвах хозяйства нужно вносить органические удобрения. Интенсивная обработка почвы способствует разложению органического вещества. Наиболее перспективным с точки зрения сохранения гумуса является бесплужное земледелие.

1.2 Пути загрязнения почвы кобальтом

Миграция веществ осуществляется в миграционных потоках: гравитационных (под влиянием силы тяжести), эоловых, водных, биологических, биогенных (перемещение организмов по территории), антропогенных. Преобладающую роль в геохимической дифференциации территории играют водные потоки.

Миграция веществ с водой осуществляется во взвешенном, истинно растворимом и коллоидном состоянии. Характер и интенсивность этого процесса зависят от свойств самих веществ, а также условий, влияющих на накопление и передвижение воды, химического, минералогического и гранулометрического состава почвенно-грунтовой толщи, свойств и режимов почв. Из-за разнообразия земной поверхности эти условия на пути природных потоков очень изменчивы, в результате возникают участки, где изменение условий миграции приводит к уменьшению подвижности веществ и их накоплению. Такие участки, зоны гипергенеза, в которых на коротком расстоянии происходит резкое уменьшение интенсивности миграции, приводящее к концентрации химических элементов, названы А.И Перельманом геохимическими барьерами. Он выделяет три типа геохимических барьеров: биогеохимические, физико-химические и механические.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.